Three-dimensional cationic covalent organic framework membranes for rapid and selective lithium extraction from saline water

Wentong Meng, Sifan Chen, Zhouyu Guo, Feng Gao, Jun Wang, Jianguo Lu, Yang Hou, Qinggang He, Xiaoli Zhan, Ming Qiu, Qinghua Zhang
{"title":"Three-dimensional cationic covalent organic framework membranes for rapid and selective lithium extraction from saline water","authors":"Wentong Meng, Sifan Chen, Zhouyu Guo, Feng Gao, Jun Wang, Jianguo Lu, Yang Hou, Qinggang He, Xiaoli Zhan, Ming Qiu, Qinghua Zhang","doi":"10.1038/s44221-024-00379-3","DOIUrl":null,"url":null,"abstract":"The development of high-efficiency ion transport membranes is of great importance in the fields of energy, water purification and resource recovery. In the application of lithium extraction from salt lakes, membranes dominated by size sieving and Donnan exclusion typically enhance Li+/Mg2+ selectivity by sacrificing Li+ flux, which inevitably increases the energy consumption of the separation dramatically. In this work, we manipulate the pore charge density to demonstrate the important role of counterion-mediated positively charged channels in efficient Li+ transport. The potential relationship between the transport behaviour of cations and the membrane charge density was revealed after decoupling the transport of anions and cations using the electric field. On the basis of Manning’s counterion condensation theory and density functional theory calculations, the transport mode in monovalent cations by interacting with the anchored counterions in the positively charged pores to form a high-velocity transport pathway is revealed. The cationic covalent organic framework membranes displayed high Li+/Mg2+ selectivity of 321 in electrodialysis tests while possessing superior lithium permeation rates (0.53 mol m−2 h−1). Therefore, our results suggest that counterion-mediated covalent organic framework membranes have great potential in the field of lithium resource extraction. The counterion-mediated positively charged channels in covalent organic framework membranes enable the fast transport of lithium ions, realizing high lithium/magnesium selectivity without compromising lithium ion flux.","PeriodicalId":74252,"journal":{"name":"Nature water","volume":"3 2","pages":"191-200"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature water","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s44221-024-00379-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The development of high-efficiency ion transport membranes is of great importance in the fields of energy, water purification and resource recovery. In the application of lithium extraction from salt lakes, membranes dominated by size sieving and Donnan exclusion typically enhance Li+/Mg2+ selectivity by sacrificing Li+ flux, which inevitably increases the energy consumption of the separation dramatically. In this work, we manipulate the pore charge density to demonstrate the important role of counterion-mediated positively charged channels in efficient Li+ transport. The potential relationship between the transport behaviour of cations and the membrane charge density was revealed after decoupling the transport of anions and cations using the electric field. On the basis of Manning’s counterion condensation theory and density functional theory calculations, the transport mode in monovalent cations by interacting with the anchored counterions in the positively charged pores to form a high-velocity transport pathway is revealed. The cationic covalent organic framework membranes displayed high Li+/Mg2+ selectivity of 321 in electrodialysis tests while possessing superior lithium permeation rates (0.53 mol m−2 h−1). Therefore, our results suggest that counterion-mediated covalent organic framework membranes have great potential in the field of lithium resource extraction. The counterion-mediated positively charged channels in covalent organic framework membranes enable the fast transport of lithium ions, realizing high lithium/magnesium selectivity without compromising lithium ion flux.

Abstract Image

三维阳离子共价有机框架膜用于快速和选择性从盐水中提取锂
高效离子传输膜的开发在能源、水净化和资源回收等领域具有重要意义。在盐湖提锂的应用中,以粒度筛分和Donnan排除为主的膜通常通过牺牲Li+通量来提高Li+/Mg2+的选择性,这不可避免地大大增加了分离的能耗。在这项工作中,我们操纵孔隙电荷密度来证明反离子介导的正电荷通道在有效的Li+传输中的重要作用。利用电场将阴离子和阳离子的输运解耦后,揭示了阳离子输运行为与膜电荷密度之间的潜在关系。基于Manning的反离子凝聚理论和密度泛函理论计算,揭示了一价阳离子通过与锚定的反离子在带正电的孔隙中相互作用形成高速输运途径的输运模式。阳离子共价有机框架膜在电渗析试验中显示出321的高Li+/Mg2+选择性,同时具有优异的锂渗透率(0.53 mol m−2 h−1)。因此,我们的研究结果表明,反离子介导的共价有机框架膜在锂资源提取领域具有很大的潜力。共价有机框架膜中的反离子介导的正电荷通道使锂离子能够快速传输,在不影响锂离子通量的情况下实现高锂/镁选择性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信