Advanced biology最新文献

筛选
英文 中文
Advanced 2D Nanomaterials for Phototheranostics of Breast Cancer: A Paradigm Shift. 用于乳腺癌光热疗法的先进二维纳米材料:范式转变。
IF 3.2 3区 生物学
Advanced biology Pub Date : 2024-11-14 DOI: 10.1002/adbi.202400441
Arpana Parihar, Kritika Gaur, Paromita Sarbadhikary
{"title":"Advanced 2D Nanomaterials for Phototheranostics of Breast Cancer: A Paradigm Shift.","authors":"Arpana Parihar, Kritika Gaur, Paromita Sarbadhikary","doi":"10.1002/adbi.202400441","DOIUrl":"https://doi.org/10.1002/adbi.202400441","url":null,"abstract":"<p><p>Breast cancer is the leading cause of women's deaths and associated comorbidities. The advanced and targeted strategies against breast cancer have gained considerable attention due to their potential enhanced therapeutic efficacy over conventional therapies. In this context, phototherapies like photodynamic therapy (PDT) and photothermal therapy (PTT) have shown promise as an effective and alternative strategy due to reduced side effects, noninvasiveness, and spatiotemporal specificity. With the advent of nanotechnology, several types of nanomaterials that have shown excellent prospects in increasing the efficacy of photo therapies have been exploited in cancer treatment. In recent years, 2D nanomaterials have stood out promising because of their unique ultrathin planar structure, chemical, physical, tunable characteristics, and corresponding remarkable physiochemical/biological properties. In this review, the potential and the current status of several types of 2D nanomaterials such as graphene-based nanomaterials, Mxenes, Black phosphorous, and Transition Metal Dichalcogenides for photo/thermo and combination-based imaging and therapy of breast cancer have been discussed. The current challenges and prospects in terms of translational potential in future clinical oncology are highlighted.</p>","PeriodicalId":7234,"journal":{"name":"Advanced biology","volume":" ","pages":"e2400441"},"PeriodicalIF":3.2,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142611996","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Novel UBM/SIS Composite Biological Scaffold for 2-Year Abdominal Defect Repairing and Strength Recovery in Canine Model. 一种新型 UBM/SIS 复合生物支架,用于犬模型腹部缺损修复和力量恢复两年。
IF 3.2 3区 生物学
Advanced biology Pub Date : 2024-11-14 DOI: 10.1002/adbi.202400131
Weidong Zhong, Jinshui Chen, Qifeng Xie, Wenyue Cheng, Meibiao Zhao, Yang Sun, Jing Dai, Jian Zhang
{"title":"A Novel UBM/SIS Composite Biological Scaffold for 2-Year Abdominal Defect Repairing and Strength Recovery in Canine Model.","authors":"Weidong Zhong, Jinshui Chen, Qifeng Xie, Wenyue Cheng, Meibiao Zhao, Yang Sun, Jing Dai, Jian Zhang","doi":"10.1002/adbi.202400131","DOIUrl":"https://doi.org/10.1002/adbi.202400131","url":null,"abstract":"<p><p>Biological scaffolds are widely utilized in hernia treatment due to their exceptional pro-regenerative properties, which mitigate scar formation. However, serious complications occurred, caused by inflammatory response, premature degradation, and mechanical failure. Consequently, improvements of the biological scaffold are necessary to mitigate these risks. In this study, a novel biological scaffold integrating basement membrane-containing urinary bladder matrix (UBM) and small intestinal submucosa (SIS) is developed, and its safety and effectiveness are assessed in comparison to a commercial SIS (c-SIS) scaffold. The introduction of UBM as top surface layers significantly promotes cell adhesion, facilitating rapid formation of isolated regeneration zone. Proteomic analysis has demonstrated a more efficient decellularization of the UBM/SIS scaffold, which subsequently mitigates inflammation in murine models, and promotes the polarization of macrophages toward the pro-healing M2 phenotype in a rat model of abdominal wall muscle defect. Furthermore, a two-year repair trial is conducted on a full-thickness abdominal wall muscle defect in canine model and confirmed that the UBM/SIS scaffold exhibits reduced seroma occurrences and enhanced tissue repair performances. Overall, the efficacy of this novel biological scaffold suggests its potential to minimize hernia recurrence in clinical practice and mitigate patient suffering from severe inflammatory responses.</p>","PeriodicalId":7234,"journal":{"name":"Advanced biology","volume":" ","pages":"e2400131"},"PeriodicalIF":3.2,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142611992","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Accurate Identification of Cancer Cells in Complex Pre-Clinical Models Using a Deep-Learning Neural Network: A Transfection-Free Approach (Adv. Biology 11/2024) 利用深度学习神经网络准确识别复杂临床前模型中的癌细胞:无转染方法(生物学进展 11/2024)
IF 3.2 3区 生物学
Advanced biology Pub Date : 2024-11-12 DOI: 10.1002/adbi.202470112
Marilisa Cortesi, Dongli Liu, Elyse Powell, Ellen Barlow, Kristina Warton, Caroline E. Ford
{"title":"Accurate Identification of Cancer Cells in Complex Pre-Clinical Models Using a Deep-Learning Neural Network: A Transfection-Free Approach (Adv. Biology 11/2024)","authors":"Marilisa Cortesi,&nbsp;Dongli Liu,&nbsp;Elyse Powell,&nbsp;Ellen Barlow,&nbsp;Kristina Warton,&nbsp;Caroline E. Ford","doi":"10.1002/adbi.202470112","DOIUrl":"https://doi.org/10.1002/adbi.202470112","url":null,"abstract":"<p><b>Accurate Identification of Cancer Cells</b></p><p>Distinguishing the contribution of different cell types in co-cultures is a major challenge. Marilisa Cortesi, Caroline E. Ford, and co-workers have addressed it through a deep learning-based software tool that distinguishes healthy and cancer cells solely from the shape of the nucleus. This method opens to the possibility of using a wide variety of cell types, including patient-derived ones, in co-cultures. More details can be found in article number 2400034. Image created by Dr. Tim Salita.\u0000\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":7234,"journal":{"name":"Advanced biology","volume":"8 11","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adbi.202470112","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142641761","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Masthead: (Adv. Biology 11/2024) 刊头:(Adv. Biology 11/2024)
IF 3.2 3区 生物学
Advanced biology Pub Date : 2024-11-12 DOI: 10.1002/adbi.202470113
{"title":"Masthead: (Adv. Biology 11/2024)","authors":"","doi":"10.1002/adbi.202470113","DOIUrl":"https://doi.org/10.1002/adbi.202470113","url":null,"abstract":"","PeriodicalId":7234,"journal":{"name":"Advanced biology","volume":"8 11","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adbi.202470113","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142641762","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Predicting Clinical Outcomes of SARS-CoV-2 Drug Efficacy with a High-Throughput Human Airway Microphysiological System (Adv. Biology 11/2024) 利用高通量人体气道微生理系统预测SARS-CoV-2药物疗效的临床结果(生物学进展 11/2024)
IF 3.2 3区 生物学
Advanced biology Pub Date : 2024-11-12 DOI: 10.1002/adbi.202470111
Landys Lopez Quezada, Felix Mba Medie, Rebeccah J. Luu, Robert B. Gaibler, Elizabeth P. Gabriel, Logan D. Rubio, Thomas J. Mulhern, Elizabeth E. Marr, Jeffrey T. Borenstein, Christine R. Fisher, Ashley L. Gard
{"title":"Predicting Clinical Outcomes of SARS-CoV-2 Drug Efficacy with a High-Throughput Human Airway Microphysiological System (Adv. Biology 11/2024)","authors":"Landys Lopez Quezada,&nbsp;Felix Mba Medie,&nbsp;Rebeccah J. Luu,&nbsp;Robert B. Gaibler,&nbsp;Elizabeth P. Gabriel,&nbsp;Logan D. Rubio,&nbsp;Thomas J. Mulhern,&nbsp;Elizabeth E. Marr,&nbsp;Jeffrey T. Borenstein,&nbsp;Christine R. Fisher,&nbsp;Ashley L. Gard","doi":"10.1002/adbi.202470111","DOIUrl":"https://doi.org/10.1002/adbi.202470111","url":null,"abstract":"<p><b>SARS-CoV-2 Drug Efficacy</b></p><p>Rapid identification of effective therapeutics for emerging infectious diseases requires predictive preclinical drug screening tools that are operable at scale in high-containment laboratory environments. In article number 2300511 Ashley L. Gard, Christine R. Fisher, and co-workers at Draper used a high-throughput human airway microphysiological system, PREDICT96-ALI, to evaluate the efficacy of several SARS-CoV-2 interventions and distinguish ineffective lead compounds from clinically efficacious antivirals.\u0000\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":7234,"journal":{"name":"Advanced biology","volume":"8 11","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adbi.202470111","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142641727","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Evaluating the Biodegradability and Cellular Compatibility of Mg-Zn-Nd Alloy for Vascular Stent Application. 评估血管支架应用中 Mg-Zn-Nd 合金的生物降解性和细胞兼容性。
IF 3.2 3区 生物学
Advanced biology Pub Date : 2024-11-11 DOI: 10.1002/adbi.202400165
Yiqi Xing, Lili Tan, Zheng Ma, Tingzhun Zhu, Guobiao Liang
{"title":"Evaluating the Biodegradability and Cellular Compatibility of Mg-Zn-Nd Alloy for Vascular Stent Application.","authors":"Yiqi Xing, Lili Tan, Zheng Ma, Tingzhun Zhu, Guobiao Liang","doi":"10.1002/adbi.202400165","DOIUrl":"https://doi.org/10.1002/adbi.202400165","url":null,"abstract":"<p><p>The study is designed to evaluate the corrosion behavior, biocompatibility, and cytotoxicity of a novel magnesium alloy, Mg-2Zn-0.5Nd (ZN20), for potential use as biodegradable scaffolding in cerebrovascular stents. Magnesium alloy (AZ31) and ZN20 are co-cultured with Human Umbilical Vein Endothelial Cells (HUVEC) and human neuroblastoma cell (SH-SY5Y), respectively. The corrosion of AZ31 and ZN20 in different time periods is detected by electron microscope, the effects of AZ31 and ZN20 on the expression level of inflammatory factors are detected by ELISA, the PH value of cells in each group is detected, and the cell proliferation is detected by cck-8. Cell-related apoptosis protein, the expression of Platelet endothelial cell adhesion molecule-1 (CD31) and VE-cad is detected, and the pathological analysis of rat vascular tissue is carried out by HE experiment. In contrast to the AZ31 group, ZN20 exhibits mild, uniform corrosion and does not significantly deter HUVEC proliferation or increase inflammatory markers and In vivo testing reveals better endothelization with ZN20, as demonstrated by higher expression of endothelial markers CD31, and intact endothelial structure group. Western blotting shows favorable expression levels of apoptotic and anti-apoptotic markers in the ZN20 group. ZN20 alloy demonstrates enhanced corrosion resistance, favorable endothelial compatibility, and reduced cytotoxicity, endorsing its safe application in vascular stent use.</p>","PeriodicalId":7234,"journal":{"name":"Advanced biology","volume":" ","pages":"e2400165"},"PeriodicalIF":3.2,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142612004","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Morphological and Optical Profiling of Melanocytes and SK-MEL-28 Melanoma Cells Via Digital Holographic Microscopy and Quantitative Phase Imaging. 通过数字全息显微镜和定量相位成像对黑色素细胞和 SK-MEL-28 黑色素瘤细胞进行形态学和光学分析。
IF 3.2 3区 生物学
Advanced biology Pub Date : 2024-11-11 DOI: 10.1002/adbi.202400346
Ayah A Farhat, Yazan A Almahdi, Fatima Z Alshuhani, Besa Xhabija
{"title":"Morphological and Optical Profiling of Melanocytes and SK-MEL-28 Melanoma Cells Via Digital Holographic Microscopy and Quantitative Phase Imaging.","authors":"Ayah A Farhat, Yazan A Almahdi, Fatima Z Alshuhani, Besa Xhabija","doi":"10.1002/adbi.202400346","DOIUrl":"https://doi.org/10.1002/adbi.202400346","url":null,"abstract":"<p><p>Melanoma, which originates from pigment-producing melanocytes, is an aggressive and deadly skin cancer. Despite extensive research, its mechanisms of progression and metastasis remain unclear. This study uses quantitative phase imaging via digital holographic microscopy, Principal Component Analysis (PCA), and t-distributed Stochastic Neighbor Embedding (t-SNE) to identify the morphological, optical, and behavioral differences between normal melanocytes and SK-MEL-28 melanoma cells. Our findings reveal significant differences in cell shape, size, and internal organization, with SK-MEL-28 cells displaying greater size variability, more polygonal shapes, and higher optical thickness. Phase shift parameters and surface roughness analyses underscore melanoma cells' uniform and predictable textures. Violin plots highlight the dynamic and varied migration of SK-MEL-28 cells, contrasting with the localized movement of melanocytes. Hierarchical clustering of correlation matrices provides further insights into complex morphological and optical relationships. Integrating label-free imaging with robust analytical methods enhances understanding of melanoma's aggressive behavior, supporting targeted therapies and highlighting potential biomarkers for precise melanoma diagnostics and treatment.</p>","PeriodicalId":7234,"journal":{"name":"Advanced biology","volume":" ","pages":"e2400346"},"PeriodicalIF":3.2,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142612006","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Emerging Life Sciences Series: Q & A with the Editor: Genetics and Metabolism 新兴生命科学系列:与编辑的问答:遗传学和代谢
IF 4.1 3区 生物学
Advanced biology Pub Date : 2023-09-11 DOI: 10.1002/adbi.202300160
Monty A. Montano
{"title":"Emerging Life Sciences Series: Q & A with the Editor: Genetics and Metabolism","authors":"Monty A. Montano","doi":"10.1002/adbi.202300160","DOIUrl":"10.1002/adbi.202300160","url":null,"abstract":"&lt;p&gt;&lt;i&gt;As part of our series on emerging life sciences, the editor speaks with Drs Mario Luca Morieri MD and Hongwen Zhou MD, principal investigators at University of Padova and Nanjing Medical University, respectively, about their research pathway into genetics and metabolic disease and their passion for advancing research in this area. Drs Morieri (MLM) and Zhou (HZ) reflect on personal and professional experiences motivating their research and the road ahead&lt;/i&gt;.&lt;/p&gt;&lt;p&gt;&lt;b&gt;1. Can you share a life event or experience that led you to research the interplay of genetics and environmental factors driving metabolic disease?&lt;/b&gt;&lt;/p&gt;&lt;p&gt;MLM: As a young physician and scientist I was interested in a holistic approach to patient care and chose to specialize in internal medicine. When treating patients with diabetes, obesity, and dyslipidemia, I realized these conditions had multi-organ influences that differed from patient to patient. As an example, a young patient with a good life-style style developed diabetes or cardiovascular disease (CVD) in their 40s, while an older patient with longer exposure to multiple cardiometabolic risk factors did not develop CVD or diabetes. While on average there is no doubt that the overall accumulation of these and other cardio-metabolic risk factors (e.g., sedentary lifestyle, smoking, unhealthy diet, hypertension) are directly correlated with risk of cardiometabolic disease, there is clearly heterogeneity in outcomes. Those were the years of the first -omics studies (genome-wide studies, microbiomes studies) and renewed enthusiasm for precision medicine approaches. Driven by my interest in this topic, I pursued a fellowship at the Joslin Diabetes Center (Boston, USA) to study the interplay between genetics and environmental factors driving metabolic disease.&lt;/p&gt;&lt;p&gt;HZ: Among my patients with obesity there was one case I would like to share: I diagnosed and treated a 35-year-old female patient who complained of hyperphagia, early-onset progressive and refractory obesity with normal birth weight. Her BMI was 57.8 kg/m&lt;sup&gt;2&lt;/sup&gt;, with fat accumulation throughout the body and distributed in a pantaloon way. Lifestyle modification, medication, and surgical intervention, such as gastric bypass surgery, were all unhelpful. With further investigation, family history revealed a consanguineous marriage between her parents (first-degree cousins) with normal weight and blood glucose level. Whole Genome Sequencing indicated the presence of a loss of function mutation in the gene of the leptin receptor, leading to the symptoms the patient was experiencing. This case and others led me to think about the interplay of genetics and environmental factors driving metabolic disease.&lt;/p&gt;&lt;p&gt;&lt;b&gt;2. What scientific insights have informed your view that obesity and diabetes are products of genetics and environment?&lt;/b&gt;&lt;/p&gt;&lt;p&gt;MLM: In our studies, evaluating the interplay between genetics and environment we were able to demonstrate that genetic bac","PeriodicalId":7234,"journal":{"name":"Advanced biology","volume":"7 9","pages":""},"PeriodicalIF":4.1,"publicationDate":"2023-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adbi.202300160","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10225759","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
TIGIT may Serve as a Potential Target for the Immunotherapy of Renal Cell Carcinoma TIGIT 可作为肾细胞癌免疫疗法的潜在靶点。
IF 4.1 3区 生物学
Advanced biology Pub Date : 2023-09-10 DOI: 10.1002/adbi.202300050
Xin Hong, Chengfan Yu, Jianlong Bi, Qing Liu, Qiang Wang
{"title":"TIGIT may Serve as a Potential Target for the Immunotherapy of Renal Cell Carcinoma","authors":"Xin Hong,&nbsp;Chengfan Yu,&nbsp;Jianlong Bi,&nbsp;Qing Liu,&nbsp;Qiang Wang","doi":"10.1002/adbi.202300050","DOIUrl":"10.1002/adbi.202300050","url":null,"abstract":"<div>\u0000 \u0000 <section>\u0000 \u0000 <p>This study aims to explore whether TIGIT is an effective target for the immunotherapy of renal cell cancer (RCC) with PD-1 as a positive control. The expression of TIGIT and PD-1 in RCC and peripheral blood mononuclear cells (PBMC) and the correlation between TIGIT and PD-1 are evaluated. The expression of TIGIT and PD-1 is inhibited, and then the proliferation, apoptosis, and migration are assessed. TIGIT expression is positively related to the expression of PDCD1, BTLA, ICOS, and FOXP3 (<i>p</i> &lt; 0.05). TIGIT expression in the PBMC, TIL, RCC, and adjacent normal tissues is higher than PD-1 expression. Blocking the TIGIT and PD-1 signaling pathways significantly inhibits the proliferation, migration, and invasion of RCC cells and promotes their apoptosis. These effects are more evident in TIGIT inhibitors than in PD-1 inhibitors. TIGIT inhibitor mainly regulates the expression of differential genes to achieve the reconstruction of immune killing and restore the killing effect on the RCC, and its mechanism by which TIGIT functions overlap that of PD-1 inhibitor. TIGIT may become a target for the immunotherapy of RCC, and there is a theoretical basis for the combination of TIGIT inhibitors and PD-1 inhibitors for the treatment of RCC.</p>\u0000 </section>\u0000 </div>","PeriodicalId":7234,"journal":{"name":"Advanced biology","volume":"8 1","pages":""},"PeriodicalIF":4.1,"publicationDate":"2023-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10553803","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Single-Cell RNA Transcriptome of the Human Endometrium Reveals Epithelial Characterizations Associated with Recurrent Implantation Failure 人类子宫内膜的单细胞 RNA 转录组揭示了与反复着床失败有关的上皮特征。
IF 4.1 3区 生物学
Advanced biology Pub Date : 2023-09-10 DOI: 10.1002/adbi.202300110
Hong Zhang, Chanyu Zhang, Shen Zhang
{"title":"Single-Cell RNA Transcriptome of the Human Endometrium Reveals Epithelial Characterizations Associated with Recurrent Implantation Failure","authors":"Hong Zhang,&nbsp;Chanyu Zhang,&nbsp;Shen Zhang","doi":"10.1002/adbi.202300110","DOIUrl":"10.1002/adbi.202300110","url":null,"abstract":"<p>Recurrent implantation failure (RIF) remains a complex and poorly characterized disorder despite significant advancements in assisted reproductive technology. This study utilizes single-cell transcriptome sequencing (scRNA-seq) to characterize the mid-secretory endometrium of RIF patients. Stromal fibroblast-enriched and epithelium-enriched populations are collected using a two-step dissociation process. After quality control, 25,315 individual cells from 3 RIF patients are analyzed. The analysis identifies 12 distinct cell types, including 6 subtypes of epithelial cells. Significantly, the study reveals the replacement of glandular epithelia with MAP2K6<sup>+</sup>EPCAM<sup>DIM</sup> epithelia in the endometrial glands of RIF patients. Furthermore, the study demonstrates that endometrial gland organoids derived from RIF patients exhibit diminished responses to sex steroids compared to the controls. Single-cell regulatory network inference and clustering (SCENIC) analysis identifies cell-specific <i>cis</i>-regulatory elements and constructed regulatory networks in both groups, showing alterations gene-regulatory networks in RIF patients. Cell-cell communication analysis distinguishes intercellular communication between the two groups, shedding light on disrupted cellular interactions associated with RIF. In summary, these findings provide valuable insights into the cellular and molecular mechanisms underlying RIF, highlighting the roles of epithelial cells in the implantation process.</p>","PeriodicalId":7234,"journal":{"name":"Advanced biology","volume":"8 1","pages":""},"PeriodicalIF":4.1,"publicationDate":"2023-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10202588","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信