Tianhe Li, Sepehr Akhtarkhavari, Sumeng Qi, Jiawei Fan, Tu-Yung Chang, Yao-An Shen, JinMing Yang, Barbara S Slusher, Ie-Ming Shih, Stephanie Gaillard, Tian-Li Wang
{"title":"Inhibition of Glutamine Metabolism Attenuates Tumor Progression Through Remodeling of the Macrophage Immune Microenvironment.","authors":"Tianhe Li, Sepehr Akhtarkhavari, Sumeng Qi, Jiawei Fan, Tu-Yung Chang, Yao-An Shen, JinMing Yang, Barbara S Slusher, Ie-Ming Shih, Stephanie Gaillard, Tian-Li Wang","doi":"10.1002/adbi.202400738","DOIUrl":null,"url":null,"abstract":"<p><p>Targeting glutamine metabolism has emerged as a promising strategy in cancer therapy. To attain clinical utility, a number of challenges must be overcome, including in vivo anti-tumor activity, pharmacological toxicity, and clinical safety. Aside from glutamine-addicted tumor cells, immune cells may also need glutamine to sustain physiological activities; thus, the current work used two immunological-intact murine cancer models to assess the effects of glutamine antagonists on tumor cells and the immune milieu. To minimize potential off-target effects, we developed a glutamine antagonist prodrug, JHU083, which is bioactivated selectively in cancer tissues. In both murine tumor models, we observed a significant anti-tumor effect, resulting in reduced tumor burden and impeded tumor progression. Single-cell RNA sequencing of tumor tissues demonstrated that JHU083 significantly hampered the immunosuppressive M2-like macrophages but not the pro-inflammatory M1-like macrophages. Expression of Myc- and hypoxia-regulated genes were also inhibited by JHU083. Ex vivo bone marrow-derived macrophage cultures further confirmed that M2 macrophages were more sensitive to glutamine antagonist than M1 macrophages. Together, our findings indicate that JHU083 exerted its anti-tumor activity not only through direct targeting of glutamine-addicted cancer cells but also by shifting the M1/M2 macrophage landscape in favor of an immune-stimulatory microenvironment.</p>","PeriodicalId":7234,"journal":{"name":"Advanced biology","volume":" ","pages":"e00738"},"PeriodicalIF":2.6000,"publicationDate":"2025-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/adbi.202400738","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
Targeting glutamine metabolism has emerged as a promising strategy in cancer therapy. To attain clinical utility, a number of challenges must be overcome, including in vivo anti-tumor activity, pharmacological toxicity, and clinical safety. Aside from glutamine-addicted tumor cells, immune cells may also need glutamine to sustain physiological activities; thus, the current work used two immunological-intact murine cancer models to assess the effects of glutamine antagonists on tumor cells and the immune milieu. To minimize potential off-target effects, we developed a glutamine antagonist prodrug, JHU083, which is bioactivated selectively in cancer tissues. In both murine tumor models, we observed a significant anti-tumor effect, resulting in reduced tumor burden and impeded tumor progression. Single-cell RNA sequencing of tumor tissues demonstrated that JHU083 significantly hampered the immunosuppressive M2-like macrophages but not the pro-inflammatory M1-like macrophages. Expression of Myc- and hypoxia-regulated genes were also inhibited by JHU083. Ex vivo bone marrow-derived macrophage cultures further confirmed that M2 macrophages were more sensitive to glutamine antagonist than M1 macrophages. Together, our findings indicate that JHU083 exerted its anti-tumor activity not only through direct targeting of glutamine-addicted cancer cells but also by shifting the M1/M2 macrophage landscape in favor of an immune-stimulatory microenvironment.