Alexandra Anna Maria Fischer, Markus Michael Kramer, Miguel Baños, Merlin Moritz Grimm, Manfred Fliegauf, Bodo Grimbacher, Gerald Radziwill, Sven Rahmann, Wilfried Weber
{"title":"IKKα和β光遗传聚类激活NF-κB信号。","authors":"Alexandra Anna Maria Fischer, Markus Michael Kramer, Miguel Baños, Merlin Moritz Grimm, Manfred Fliegauf, Bodo Grimbacher, Gerald Radziwill, Sven Rahmann, Wilfried Weber","doi":"10.1002/adbi.202400384","DOIUrl":null,"url":null,"abstract":"<p>Molecular optogenetics allows the control of molecular signaling pathways in response to light. This enables the analysis of the kinetics of signal activation and propagation in a spatially and temporally resolved manner. A key strategy for such control is the light-inducible clustering of signaling molecules, which leads to their activation and subsequent downstream signaling. In this work, an optogenetic approach is developed for inducing graded clustering of different proteins that are fused to eGFP, a widely used protein tag. To this aim, an eGFP-specific nanobody is fused to Cryptochrome 2 variants engineered for different orders of cluster formation. This is exemplified by clustering eGFP-IKKα and eGFP-IKKβ, thereby achieving potent and reversible activation of NF-κB signaling. It is demonstrated that this approach can activate downstream signaling via the endogenous NF-κB pathway and is thereby capable of activating both an NF-κB-responsive reporter construct as well as endogenous NF-κB-responsive target genes as analyzed by RNA sequencing. The generic design of this system is likely transferable to other signaling pathways to analyze the kinetics of signal activation and propagation.</p>","PeriodicalId":7234,"journal":{"name":"Advanced biology","volume":"9 9","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://advanced.onlinelibrary.wiley.com/doi/epdf/10.1002/adbi.202400384","citationCount":"0","resultStr":"{\"title\":\"Activation of NF-κB Signaling by Optogenetic Clustering of IKKα and β\",\"authors\":\"Alexandra Anna Maria Fischer, Markus Michael Kramer, Miguel Baños, Merlin Moritz Grimm, Manfred Fliegauf, Bodo Grimbacher, Gerald Radziwill, Sven Rahmann, Wilfried Weber\",\"doi\":\"10.1002/adbi.202400384\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Molecular optogenetics allows the control of molecular signaling pathways in response to light. This enables the analysis of the kinetics of signal activation and propagation in a spatially and temporally resolved manner. A key strategy for such control is the light-inducible clustering of signaling molecules, which leads to their activation and subsequent downstream signaling. In this work, an optogenetic approach is developed for inducing graded clustering of different proteins that are fused to eGFP, a widely used protein tag. To this aim, an eGFP-specific nanobody is fused to Cryptochrome 2 variants engineered for different orders of cluster formation. This is exemplified by clustering eGFP-IKKα and eGFP-IKKβ, thereby achieving potent and reversible activation of NF-κB signaling. It is demonstrated that this approach can activate downstream signaling via the endogenous NF-κB pathway and is thereby capable of activating both an NF-κB-responsive reporter construct as well as endogenous NF-κB-responsive target genes as analyzed by RNA sequencing. The generic design of this system is likely transferable to other signaling pathways to analyze the kinetics of signal activation and propagation.</p>\",\"PeriodicalId\":7234,\"journal\":{\"name\":\"Advanced biology\",\"volume\":\"9 9\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-07-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://advanced.onlinelibrary.wiley.com/doi/epdf/10.1002/adbi.202400384\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://advanced.onlinelibrary.wiley.com/doi/10.1002/adbi.202400384\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced biology","FirstCategoryId":"99","ListUrlMain":"https://advanced.onlinelibrary.wiley.com/doi/10.1002/adbi.202400384","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Activation of NF-κB Signaling by Optogenetic Clustering of IKKα and β
Molecular optogenetics allows the control of molecular signaling pathways in response to light. This enables the analysis of the kinetics of signal activation and propagation in a spatially and temporally resolved manner. A key strategy for such control is the light-inducible clustering of signaling molecules, which leads to their activation and subsequent downstream signaling. In this work, an optogenetic approach is developed for inducing graded clustering of different proteins that are fused to eGFP, a widely used protein tag. To this aim, an eGFP-specific nanobody is fused to Cryptochrome 2 variants engineered for different orders of cluster formation. This is exemplified by clustering eGFP-IKKα and eGFP-IKKβ, thereby achieving potent and reversible activation of NF-κB signaling. It is demonstrated that this approach can activate downstream signaling via the endogenous NF-κB pathway and is thereby capable of activating both an NF-κB-responsive reporter construct as well as endogenous NF-κB-responsive target genes as analyzed by RNA sequencing. The generic design of this system is likely transferable to other signaling pathways to analyze the kinetics of signal activation and propagation.