AdipocytePub Date : 2024-12-01Epub Date: 2024-06-11DOI: 10.1080/21623945.2024.2350751
Iram Fatima S Siddiqui, Muthu L Muthu, Dieter P Reinhardt
{"title":"Isolation and adipogenic differentiation of murine mesenchymal stem cells harvested from macrophage-depleted bone marrow and adipose tissue.","authors":"Iram Fatima S Siddiqui, Muthu L Muthu, Dieter P Reinhardt","doi":"10.1080/21623945.2024.2350751","DOIUrl":"10.1080/21623945.2024.2350751","url":null,"abstract":"<p><strong>Introduction and purpose: </strong>Mouse mesenchymal stem cells (MSCs) provide a resourceful tool to study physiological and pathological aspects of adipogenesis. Bone marrow-derived MSCs (BM-MSCs) and adipose tissue-derived MSCs (ASCs) are widely used for these studies. Since there is a wide spectrum of methods available, the purpose is to provide a focused hands-on procedural guide for isolation and characterization of murine BM-MSCs and ASCs and to effectively differentiate them into adipocytes.</p><p><strong>Methods and results: </strong>Optimized harvesting procedures for murine BM-MSCs and ASCs are described and graphically documented. Since macrophages reside in bone-marrow and fat tissues and regulate the biological behaviour of BM-MSCs and ASCs, we included a procedure to deplete macrophages from the MSC preparations. The identity and stemness of BM-MSCs and ASCs were confirmed by flow cytometry using established markers. Since the composition and concentrations of adipogenic differentiation cocktails differ widely, we present a standardized four-component adipogenic cocktail, consisting of insulin, dexamethasone, 3-isobutyl-1-methylxanthine, and indomethacin to efficiently differentiate freshly isolated or frozen/thawed BM-MSCs and ASCs into adipocytes. We further included visualization and quantification protocols of the differentiated adipocytes.</p><p><strong>Conclusion: </strong>This laboratory protocol was designed as a step-by-step procedure for harvesting murine BM-MSCs and ASCs and differentiating them into adipocytes.</p>","PeriodicalId":7226,"journal":{"name":"Adipocyte","volume":"13 1","pages":"2350751"},"PeriodicalIF":3.5,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11174124/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141299746","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
AdipocytePub Date : 2024-12-01Epub Date: 2024-07-11DOI: 10.1080/21623945.2024.2376571
Ewa Bielczyk-Maczynska
{"title":"Quantification of cell cycle re-entry during dedifferentiation of primary adipocytes <i>in vitro</i>.","authors":"Ewa Bielczyk-Maczynska","doi":"10.1080/21623945.2024.2376571","DOIUrl":"10.1080/21623945.2024.2376571","url":null,"abstract":"<p><p>Dedifferentiated adipose tissue (DFAT) has been proposed as a promising source of patient-specific multipotent progenitor cells (MPPs). During induced dedifferentiation, adipocytes exhibit profound gene expression and cell morphology changes. However, dedifferentiation of post-mitotic cells is expected to enable proliferation, which is critical if enough MPPs are to be obtained. Here, lineage tracing was employed to quantify cell proliferation in mouse adipocytes subjected to a dedifferentiation-inducing protocol commonly used to obtain DFAT cells. No evidence of cell proliferation in adipocyte-derived cells was observed, in contrast to the robust proliferation of non-adipocyte cells present in adipose tissue. We conclude that proliferative MPPs derived using the ceiling culture method most likely arise from non-adipocyte cells in adipose tissue.</p>","PeriodicalId":7226,"journal":{"name":"Adipocyte","volume":"13 1","pages":"2376571"},"PeriodicalIF":3.5,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11244334/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141578668","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
AdipocytePub Date : 2024-12-01Epub Date: 2024-11-01DOI: 10.1080/21623945.2024.2421745
Maria Razzoli, Seth McGonigle, Bhavani Shankar Sahu, Pedro Rodriguez, Daniel Svedberg, Loredana Rao, Chiara Ruocco, Enzo Nisoli, Bianca Vezzani, Andrea Frontini, Alessandro Bartolomucci
{"title":"A key role for P2RX5 in brown adipocyte differentiation and energy homeostasis.","authors":"Maria Razzoli, Seth McGonigle, Bhavani Shankar Sahu, Pedro Rodriguez, Daniel Svedberg, Loredana Rao, Chiara Ruocco, Enzo Nisoli, Bianca Vezzani, Andrea Frontini, Alessandro Bartolomucci","doi":"10.1080/21623945.2024.2421745","DOIUrl":"10.1080/21623945.2024.2421745","url":null,"abstract":"<p><p>Brown adipocytes are defined based on a distinct morphology and genetic signature that includes, amongst others, the expression of the Purinergic 2 Receptor X5 (P2RX5). However, the role of P2RX5 in brown adipocyte and brown adipose tissue function is poorly characterized. In the present study, we conducted a metabolic characterization of P2RX5 knockout male mice; next, we characterized this purinergic pathway in a cell-autonomous context in brown adipocytes. We then tested the role of the P2RX5 receptor agonism in metabolic responses in vivo in conditions of minimal adaptive thermogenesis requirements. Our data show that loss of P2RX5 causes reduced brown adipocyte differentiation in vitro, and browning in vivo. Lastly, we unravel a previously unappreciated role for P2RX5 agonism to exert an anti-obesity effect in the presence of enhanced brown adipose tissue recruitment in male mice housed at thermoneutrality. Altogether, our data support a role for P2RX5 in mediating brown adipocyte differentiation and function that could be further targeted for benefits in the context of adipose tissue pathology and metabolic diseases.</p>","PeriodicalId":7226,"journal":{"name":"Adipocyte","volume":"13 1","pages":"2421745"},"PeriodicalIF":3.5,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11540092/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142556785","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Comparison of stromal vascular fraction cell composition between Coleman fat and extracellular matrix/stromal vascular fraction gel.","authors":"Xiaoyun Li, Guohong Zhang, Mengmeng Wang, Changhao Lu, Guangping Zhang, Zhehui Chen, Yingchang Ji","doi":"10.1080/21623945.2024.2360037","DOIUrl":"10.1080/21623945.2024.2360037","url":null,"abstract":"<p><p>As a mechanically condensed product of Coleman fat, extracellular matrix/stromal vascular fraction gel (ECM/SVF-gel) eliminates adipocytes, concentrates SVF cells, and improves fat graft retention. This study aims to compare SVF cell composition between Coleman fat and ECM/SVF-gel. Matched Coleman fat and ECM/SVF-gel of 28 healthy women were subjected to RNA-seq, followed by functional enrichment and cell-type-specific enrichment analyses, and deconvolution of SVF cell subsets, reconstructing SVF cell composition in the transcriptome level. ECM/SVF-gels had 9 upregulated and 73 downregulated differentially expressed genes (DEGs). Downregulated DEGs were mainly associated with inflammatory and immune responses, and enriched in fat macrophages. M2 macrophages, resting CD4<sup>+</sup> memory T cells, M1 macrophages, resting mast cells, and M0 macrophages ranked in the top five most prevalent immune cells in the two groups. The proportions of the principal non-immune cells (e.g., adipose-derived stem cells, pericytes, preadipocytes, microvascular endothelial cells) had no statistical differences between the two groups. Our findings reveal ECM/SVF-gels share the same dominant immune cells beneficial to fat graft survival with Coleman fat, but exhibiting obvious losses of immune cells (especially macrophages), while non-immune cells necessary for adipose regeneration might have no significant loss in ECM/SVF-gels and their biological effects could be markedly enhanced by the ECM/SVF-gel's condensed nature.</p>","PeriodicalId":7226,"journal":{"name":"Adipocyte","volume":"13 1","pages":"2360037"},"PeriodicalIF":3.5,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11152101/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141199244","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
AdipocytePub Date : 2024-12-01Epub Date: 2024-07-09DOI: 10.1080/21623945.2024.2369776
Zohaib Iqbal, Senthil Kandaswamy Vasan, Helene Fachim, John Warner-Levy, Rachelle P Donn, Basil J Ammori, Adrian H Heald, Handrean Soran, Akheel A Syed
{"title":"Are weight loss and metabolic outcomes of bariatric surgery influenced by candidate glucocorticoid receptor gene polymorphisms? A prospective study.","authors":"Zohaib Iqbal, Senthil Kandaswamy Vasan, Helene Fachim, John Warner-Levy, Rachelle P Donn, Basil J Ammori, Adrian H Heald, Handrean Soran, Akheel A Syed","doi":"10.1080/21623945.2024.2369776","DOIUrl":"10.1080/21623945.2024.2369776","url":null,"abstract":"<p><strong>Background: </strong>Bariatric surgery is the most effective treatment for severe obesity. There can be variation in the degree of weight reduction following bariatric surgery. It is unknown whether single nucleotide polymorphisms (SNPs) in the glucocorticoid receptor locus (GRL) affect postoperative weight loss and metabolic outcomes.</p><p><strong>Materials/methods: </strong>We studied the association between selected candidate SNPs and postoperative weight loss and metabolic outcomes in patients with severe obesity undergoing bariatric surgery. The polymorphisms rs41423247 (Bcl1), rs56149945 (N363S) and rs6189/rs6190 (ER22/23EK) were analysed.</p><p><strong>Results: </strong>The 139 participants included 95 women (68.3%) and had a median (interquartile range) age of 53.0 (46.0-60.0) years and mean (SD) weight of 140.8 (28.8) kg and body mass index of 50.3 (8.6) kg/m2. At baseline, 59 patients had type 2 diabetes (T2D), 60 had hypertension and 35 had obstructive sleep apnoea syndrome treated with continuous positive airway pressure (CPAP). 84 patients (60.4%) underwent gastric bypass and 55 (39.6%) underwent sleeve gastrectomy. There were no significant differences in weight loss, glycated haemoglobin (HbA1c) or lipid profile categorized by genotype status, sex or median age. There was significant weight reduction after bariatric surgery with a postoperative BMI of 34.1 (6.8) kg/m2 at 24 months (<i>p</i> < 0.001).</p><p><strong>Conclusion: </strong>While GRL polymorphisms with a known deleterious effect on adipose tissue mass and function may have a small, additive effect on the prevalence of obesity and related metabolic disorders in the population, we suggest that the relatively weak biological influence of these SNPs is readily overcome by bariatric surgery.</p>","PeriodicalId":7226,"journal":{"name":"Adipocyte","volume":"13 1","pages":"2369776"},"PeriodicalIF":3.5,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11238915/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141562416","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
AdipocytePub Date : 2024-12-01Epub Date: 2024-10-17DOI: 10.1080/21623945.2024.2414919
Ifeoluwa A Odeniyi, Bulbul Ahmed, Benjamin Anbiah, Grace Hester, Peter T Abraham, Elizabeth A Lipke, Michael W Greene
{"title":"An improved <i>in vitro</i> 3T3-L1 adipocyte model of inflammation and insulin resistance.","authors":"Ifeoluwa A Odeniyi, Bulbul Ahmed, Benjamin Anbiah, Grace Hester, Peter T Abraham, Elizabeth A Lipke, Michael W Greene","doi":"10.1080/21623945.2024.2414919","DOIUrl":"https://doi.org/10.1080/21623945.2024.2414919","url":null,"abstract":"<p><p>Tumor necrosis factor alpha (TNF-α)/hypoxia-treated 3T3-L1 adipocytes have been used to model inflamed and insulin-resistant adipose tissue: this study examines gaps in the model. We tested whether modulating TNF-α/hypoxia treatment time could reduce cell death while still inducing inflammation and insulin resistance. Adipocytes were treated with TNF-α (12 h or 24 h) and incubated in a hypoxic chamber for 24 h. To examine maintenance of the phenotype over time, glucose and FBS were added at 24 h post initiation of treatment, and the cells were maintained for an additional 48 h. Untreated adipocytes were used as a control. Viability, insulin resistance, and inflammation were assessed using Live/Dead staining, RT-qPCR, ELISA, and glucose uptake assays. Treatment for 12 h with TNF-α in the presence of hypoxia resulted in an increase in the percentage of live cells compared to 24 h treated cells. Importantly, insulin resistance and inflammation were still induced in the 12 h treated adipocytes: the expression of the insulin sensitive and inflammatory genes was decreased and increased, respectively. In 72 h treated adipocytes, no significant differences were found in the viability, glucose uptake or insulin-sensitive and inflammatory gene expression. This study provides a modified approach to in vitro odeling adipocyte inflammation and insulin resistance. .</p>","PeriodicalId":7226,"journal":{"name":"Adipocyte","volume":"13 1","pages":"2414919"},"PeriodicalIF":3.5,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11487959/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142455615","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
AdipocytePub Date : 2024-12-01Epub Date: 2024-11-01DOI: 10.1080/21623945.2024.2421750
Imogen Morris, Frank Vrieling, Annemieke Bouwman, Rinke Stienstra, Eric Kalkhoven
{"title":"Lipid accumulation in adipose tissue-resident iNKT cells contributes to an inflammatory phenotype.","authors":"Imogen Morris, Frank Vrieling, Annemieke Bouwman, Rinke Stienstra, Eric Kalkhoven","doi":"10.1080/21623945.2024.2421750","DOIUrl":"10.1080/21623945.2024.2421750","url":null,"abstract":"<p><p>Reciprocal communication between adipocytes and immune cells is essential to maintain optimal adipose tissue (AT) functionality. Amongst others, adipocytes directly interact with invariant NKT cells (iNKT cells), which in turn secrete various cytokines. A lipid-rich microenvironment, as observed in obesity, skews this adipocyte-driven cytokine output towards a more inflammatory output. Whether a lipid-rich microenvironment also affects iNKT cells directly, however, is unknown. Here, we show that primary mouse iNKT cells isolated from AT can accumulate lipids in lipid droplets (LDs), more so than liver- and spleen-resident iNKT cells. Furthermore, a lipid-rich microenvironment increased the production of the proinflammatory cytokine IFNγ. Next, to an indirect, adipocyte-mediated cue, iNKT cells can directly respond to environmental lipid changes, supporting a potential role as nutrient sensors.</p>","PeriodicalId":7226,"journal":{"name":"Adipocyte","volume":"13 1","pages":"2421750"},"PeriodicalIF":3.5,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11540091/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142556786","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
AdipocytePub Date : 2024-12-01Epub Date: 2024-05-05DOI: 10.1080/21623945.2024.2339418
Luigi Marino, Bin Ni, Jared S Farrar, Joseph C Lownik, Janina V Pearce, Rebecca K Martin, Francesco S Celi
{"title":"Adipose tissue-selective ablation of ADAM10 results in divergent metabolic phenotypes following long-term dietary manipulation.","authors":"Luigi Marino, Bin Ni, Jared S Farrar, Joseph C Lownik, Janina V Pearce, Rebecca K Martin, Francesco S Celi","doi":"10.1080/21623945.2024.2339418","DOIUrl":"10.1080/21623945.2024.2339418","url":null,"abstract":"<p><p>A Disintegrin And Metalloproteinase domain-containing protein 10 (ADAM10), is involved in several metabolic and inflammatory pathways. We speculated that ADAM10 plays a modulatory role in adipose tissue inflammation and metabolism. To this end, we studied adipose tissue-specific ADAM10 knock-out mice (aKO). While young, regular chow diet-fed aKO mice showed increased insulin sensitivity, following prolonged (33 weeks) high-fat diet (HFD) exposure, aKO mice developed obesity and insulin resistance. Compared to controls, aKO mice showed less inflammatory adipokine profile despite the significant increase in adiposity. In brown adipose tissue, aKO mice on HFD had changes in CD8+ T cell populations indicating a lesser inflammatory pattern. Following HFD, both aKO and control littermates demonstrated decreased adipose tissue pro-inflammatory macrophages, and increased anti-inflammatory accumulation, without differences between the genotypes. Collectively, our observations indicate that selective deletion of ADAM10 in adipocytes results in a mitigated inflammatory response, leading to increased insulin sensitivity in young mice fed with regular diet. This state of insulin sensitivity, following prolonged HFD, facilitates energy storage resulting in increased fat accumulation which ultimately leads to the development of a phenotype of obesity and insulin resistance. In conclusion, the data indicate that ADAM10 has a modulatory effect of inflammation and whole-body energy metabolism.</p>","PeriodicalId":7226,"journal":{"name":"Adipocyte","volume":"13 1","pages":"2339418"},"PeriodicalIF":3.5,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11073419/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140846702","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
AdipocytePub Date : 2024-12-01Epub Date: 2024-07-02DOI: 10.1080/21623945.2024.2374062
Alejandra Butanda-Nuñez, Octavio Rodríguez-Cortés, Espiridión Ramos-Martínez, Marco Antonio Cerbón, Galileo Escobedo, Anahí Chavarría
{"title":"Silybin restores glucose uptake after tumour necrosis factor-alpha and lipopolysaccharide stimulation in 3T3-L1 adipocytes.","authors":"Alejandra Butanda-Nuñez, Octavio Rodríguez-Cortés, Espiridión Ramos-Martínez, Marco Antonio Cerbón, Galileo Escobedo, Anahí Chavarría","doi":"10.1080/21623945.2024.2374062","DOIUrl":"10.1080/21623945.2024.2374062","url":null,"abstract":"<p><p>Obesity is associated with a low-grade chronic inflammatory process characterized by higher circulating TNFα levels, thus contributing to insulin resistance. This study evaluated the effect of silybin, the main bioactive component of silymarin, which has anti-inflammatory properties, on TNFα levels and its impact on glucose uptake in the adipocyte cell line 3T3-L1 challenged with two different inflammatory stimuli, TNFα or lipopolysaccharide (LPS). Silybin's pre-treatment effect was evaluated in adipocytes pre-incubated with silybin (30 or 80 µM) before challenging with the inflammatory stimuli (TNFα or LPS). For the post-treatment effect, the adipocytes were first challenged with the inflammatory stimuli and then post-treated with silybin. After treatments, TNFα production, glucose uptake, and GLUT4 protein expression were determined. Both inflammatory stimuli increased TNFα secretion, diminished GLUT4 expression, and significantly decreased glucose uptake. Silybin 30 µM only reduced TNFα secretion after the LPS challenge. Silybin 80 µM as post-treatment or pre-treatment decreased TNFα levels, improving glucose uptake. However, glucose uptake enhancement induced by silybin did not depend on GLUT4 protein expression. These results show that silybin importantly reduced TNFα levels and upregulates glucose uptake, independently of GLUT4 protein expression.</p>","PeriodicalId":7226,"journal":{"name":"Adipocyte","volume":"13 1","pages":"2374062"},"PeriodicalIF":3.5,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11221471/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141475722","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
AdipocytePub Date : 2024-12-01Epub Date: 2024-11-11DOI: 10.1080/21623945.2024.2423723
Shaomin Shi, Ke Ding, Feng Chen, Mei Yang, Lihua Ni, Xiaoyan Wu
{"title":"Identification of hub genes in the crosstalk between type 2 diabetic nephropathy and obesity according to bioinformatics analysis.","authors":"Shaomin Shi, Ke Ding, Feng Chen, Mei Yang, Lihua Ni, Xiaoyan Wu","doi":"10.1080/21623945.2024.2423723","DOIUrl":"10.1080/21623945.2024.2423723","url":null,"abstract":"<p><p>Diabetic nephropathy (DN) and obesity bring a huge burden to society. Obesity plays a crucial role in the progression of type 2 DN, but the pathophysiology remains unclear. Thus, we aimed the explore the association between type 2 DN and obesity using bioinformatics method. The gene expression profiles of type 2 DN (GSE96804) and obesity (GSE94752) were downloaded from the Gene Expression Omnibus (GEO) database. The differentially expressed genes (DEGs) were screened with the thresholds defined as |log2FC| ≥1 and P<0.05. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were performed. Subsequently, a protein-protein interaction network was constructed based on the STRING database. Hub genes were identified, and the co-expression network was constructed. Finally, the hub genes were verified in clinical samples of 24 patients by immunohistochemistry. A total of 17 common DEGs were identified. Finally, two overlapping hub genes were identified (CCL18, C1QC). C1QC has been verified in clinical specimens. Using bioinformatics methods, the present study analyzed the common DEGs and the potential pathogenic mechanisms involved in type 2 DN and obesity. C1QC was the hub gene. Further studies are needed to clarify the specific relationships among C1QC, type 2 DN and obesity.</p>","PeriodicalId":7226,"journal":{"name":"Adipocyte","volume":"13 1","pages":"2423723"},"PeriodicalIF":3.5,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11556279/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142611987","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}