Adipocyte最新文献

筛选
英文 中文
Lumican modulates adipocyte function in obesity-associated type 2 diabetes. Lumican 在肥胖相关的 2 型糖尿病中调节脂肪细胞功能。
IF 3.5 4区 生物学
Adipocyte Pub Date : 2022-12-01 DOI: 10.1080/21623945.2022.2154112
Clarissa Strieder-Barboza, Carmen G Flesher, Lynn M Geletka, Tad Eichler, Olukemi Akinleye, Alexander Ky, Anne P Ehlers, Carey N Lumeng, Robert W O'Rourke
{"title":"Lumican modulates adipocyte function in obesity-associated type 2 diabetes.","authors":"Clarissa Strieder-Barboza, Carmen G Flesher, Lynn M Geletka, Tad Eichler, Olukemi Akinleye, Alexander Ky, Anne P Ehlers, Carey N Lumeng, Robert W O'Rourke","doi":"10.1080/21623945.2022.2154112","DOIUrl":"10.1080/21623945.2022.2154112","url":null,"abstract":"<p><p>Obesity-associated type 2 diabetes (DM) leads to adipose tissue dysfunction. Lumican is a proteoglycan implicated in obesity, insulin resistance (IR), and adipocyte dysfunction. Using human visceral adipose tissue (VAT) from subjects with and without DM, we studied lumican effects on adipocyte function. Lumican was increased in VAT and adipocytes in DM. Lumican knockdown in adipocytes decreased lipolysis and improved adipogenesis and insulin sensitivity in VAT adipocytes in DM, while treatment with human recombinant lumican increased lipolysis and impaired insulin-sensitivity in an ERK-dependent manner. We demonstrate that lumican impairs adipocyte metabolism, partially via ERK signalling, and is a potential target for developing adipose tissue-targeted therapeutics in DM.</p>","PeriodicalId":7226,"journal":{"name":"Adipocyte","volume":"11 1","pages":"665-675"},"PeriodicalIF":3.5,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9728465/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10631324","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Identifying sex differences in predictors of epicardial fat cell morphology. 确定心外膜脂肪细胞形态预测因子的性别差异。
IF 3.3 4区 生物学
Adipocyte Pub Date : 2022-12-01 DOI: 10.1080/21623945.2022.2073854
Helen M M Waddell, Matthew K Moore, Morgan A Herbert-Olsen, Martin K Stiles, Rexson D Tse, Sean Coffey, Regis R Lamberts, Hamish M Aitken-Buck
{"title":"Identifying sex differences in predictors of epicardial fat cell morphology.","authors":"Helen M M Waddell,&nbsp;Matthew K Moore,&nbsp;Morgan A Herbert-Olsen,&nbsp;Martin K Stiles,&nbsp;Rexson D Tse,&nbsp;Sean Coffey,&nbsp;Regis R Lamberts,&nbsp;Hamish M Aitken-Buck","doi":"10.1080/21623945.2022.2073854","DOIUrl":"https://doi.org/10.1080/21623945.2022.2073854","url":null,"abstract":"<p><p>Predictors of overall epicardial adipose tissue deposition have been found to vary between males and females. Whether similar sex differences exist in epicardial fat cell morphology is currently unknown. This study aimed to determine whether epicardial fat cell size is associated with different clinical measurements in males and females. Fat cell sizes were measured from epicardial, paracardial, and appendix adipose tissues of post-mortem cases (<i>N</i>= 118 total, 37 females). Epicardial, extra-pericardial, and visceral fat volumes were measured by computed tomography from a subset of cases (<i>N</i>= 70, 22 females). Correlation analyses and stepwise linear regression were performed to identify predictors of fat cell size in males and females. Median fat cell sizes in all depots did not differ between males and females. Body mass index (BMI) and age were independently predictive of epicardial, paracardial, and appendix fat cell sizes in males, but not in females. Epicardial and appendix fat cell sizes were associated with epicardial and visceral fat volumes, respectively, in males only. In females, paracardial fat cell size was associated with extra-pericardial fat volume, while appendix fat cell size was associated with BMI only. No predictors were associated with epicardial fat cell size in females at the univariable or multivariable levels. To conclude, no clinical measurements were useful surrogates of epicardial fat cell size in females, while BMI, age, and epicardial fat volume were independent, albeit weak, predictors in males only.</p>","PeriodicalId":7226,"journal":{"name":"Adipocyte","volume":"11 1","pages":"325-334"},"PeriodicalIF":3.3,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9122305/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10248091","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
MAPKs/AP-1, not NF-κB, is responsible for MCP-1 production in TNF-α-activated adipocytes. 在TNF-α-活化的脂肪细胞中,负责MCP-1生成的是MAPKs/AP-1,而不是NF-κB。
IF 3.3 4区 生物学
Adipocyte Pub Date : 2022-12-01 DOI: 10.1080/21623945.2022.2107786
Xiaoyu Zhang, Zhuangzhuang Liu, Wenjing Li, Yuan Kang, Zhenlu Xu, Ximeng Li, Yuan Gao, Yun Qi
{"title":"MAPKs/AP-1, not NF-κB, is responsible for MCP-1 production in TNF-α-activated adipocytes.","authors":"Xiaoyu Zhang,&nbsp;Zhuangzhuang Liu,&nbsp;Wenjing Li,&nbsp;Yuan Kang,&nbsp;Zhenlu Xu,&nbsp;Ximeng Li,&nbsp;Yuan Gao,&nbsp;Yun Qi","doi":"10.1080/21623945.2022.2107786","DOIUrl":"https://doi.org/10.1080/21623945.2022.2107786","url":null,"abstract":"<p><p>Obesity is associated with the infiltration of monocytes/macrophages into adipose tissue in which MCP-1 plays a crucial role. But the regulatory mechanism of MCP-1 expression in adipocytes is not well defined. Our results demonstrated that TNF-α induced abundant MCP-1 production in adipocytes, including 3T3-L1 pre- (≈ 9 to 18-fold), mature adipocytes (≈ 4 to 6-fold), and primary adipocytes(< 2-fold), among which 3T3-L1 pre-adipocytes showed the best reactiveness. Thus, 3T3-L1 pre-adipocytes were used for the most of following experiments. At the transcriptional level, TNF-α (20 ng/mL) also promoted the mRNA expression of MCP-1. It is well recognized that the engagement of TNF-α with its receptor can trigger both NF-κB and AP-1 signalling, which was also confirmed in our study (5-fold and 2-fold). Unexpectedly and counterintuitively, multiple NF-κB inhibitors with different mechanisms failed to suppress TNF-α-induced MCP-1 production, but rather the inhibitors for any one of MAPKs (JNK, ERK and p38) could do. This study, for the first time, reveals that MAPKs/AP-1 but not NF-κB signalling is responsible for MCP-1 production in TNF-α-activated adipocytes. These findings provide important insight into the role of AP-1 signalling in adipose tissue, and may lead to the development of therapeutical repositioning strategies in metaflammation.<b>Abbreviations:</b> AP-1, activator protein-1; CHX, cycloheximide; IR, insulin resistance; MAPK, mitogen-activated protein kinase; NF-κB, nuclear factor κB; RT-qPCR, quantitative real-time PCR; T2DM, type 2 diabetes mellitus; TRE, triphorbol acetate-response element.</p>","PeriodicalId":7226,"journal":{"name":"Adipocyte","volume":" ","pages":"477-486"},"PeriodicalIF":3.3,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9367654/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40596214","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 7
Role of lncRNA LIPE-AS1 in adipogenesis. lncRNA LIPE-AS1在脂肪形成中的作用。
IF 3.3 4区 生物学
Adipocyte Pub Date : 2022-12-01 DOI: 10.1080/21623945.2021.2013415
Alyssa Thunen, Deirdre La Placa, Zhifang Zhang, John E Shively
{"title":"Role of lncRNA LIPE-AS1 in adipogenesis.","authors":"Alyssa Thunen,&nbsp;Deirdre La Placa,&nbsp;Zhifang Zhang,&nbsp;John E Shively","doi":"10.1080/21623945.2021.2013415","DOIUrl":"https://doi.org/10.1080/21623945.2021.2013415","url":null,"abstract":"<p><p>Recent studies have identified long non-coding RNAs (lncRNAs) as potential regulators of adipogenesis. In this study, we have characterized a lncRNA, LIPE-AS1, that spans genes <i>CEACAM1</i> to <i>LIPE</i> in man with conservation of genomic organization and tissue expression between mouse and man. Tissue-specific expression of isoforms of the murine lncRNA were found in liver and adipose tissue, one of which, designated mLas-V3, overlapped the <i>Lipe</i> gene encoding hormone-sensitive lipase in both mouse and man suggesting that it may have a functional role in adipose tissue. Knock down of expression of mLas-V3 using anti-sense oligos (ASOs) led to a significant decrease in the differentiation of the OP9 pre-adipocyte cell line through the down regulation of the major adipogenic transcription factors <i>Pparg</i> and <i>Cebpa</i>. Knock down of mLas-V3 induced apoptosis during the differentiation of OP9 cells as shown by expression of active caspase-3, a change in the localization of LIP/LAP isoforms of C/EBPβ, and expression of the cellular stress induced factors CHOP, p53, PUMA, and NOXA. We conclude that mLas-V3 may play a role in protecting against stress associated with adipogenesis, and its absence leads to apoptosis.</p>","PeriodicalId":7226,"journal":{"name":"Adipocyte","volume":" ","pages":"11-27"},"PeriodicalIF":3.3,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8726699/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39626821","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 10
Bioinformatics analysis of candidate genes and potential therapeutic drugs targeting adipose tissue in obesity. 针对肥胖脂肪组织的候选基因和潜在治疗药物的生物信息学分析。
IF 3.3 4区 生物学
Adipocyte Pub Date : 2022-12-01 DOI: 10.1080/21623945.2021.2013406
Yun Yu, Yu-Han Zhang, Liang Liu, Ling-Ling Yu, Jun-Pei Li, Jing-An Rao, Feng Hu, Ling-Juan Zhu, Hui-Hui Bao, Xiao-Shu Cheng
{"title":"Bioinformatics analysis of candidate genes and potential therapeutic drugs targeting adipose tissue in obesity.","authors":"Yun Yu,&nbsp;Yu-Han Zhang,&nbsp;Liang Liu,&nbsp;Ling-Ling Yu,&nbsp;Jun-Pei Li,&nbsp;Jing-An Rao,&nbsp;Feng Hu,&nbsp;Ling-Juan Zhu,&nbsp;Hui-Hui Bao,&nbsp;Xiao-Shu Cheng","doi":"10.1080/21623945.2021.2013406","DOIUrl":"https://doi.org/10.1080/21623945.2021.2013406","url":null,"abstract":"<p><p>Obesity is a complex medical condition that affects multiple organs in the body. However, the underlying <i>mechanisms</i> of obesity, as well as its treatment, <i>are largely unexplored</i>. The focus of this research was to use bioinformatics to discover possible treatment targets for obesity. To begin, the GSE133099 database was used to identify 364 differentially expressed genes (DEGs). Then, DEGs were subjected to tissue-specific analyses and enrichment analyses, followed by the creation of a protein-protein interaction (PPI) network and generation of a drug-gene interaction database to screen key genes and potential future drugs targeting obesity. Findings have illustrated that the tissue-specific expression of neurologic markers varied significantly (34.7%, 52/150). Among these genes, Lep, ApoE, Fyn, and FN1 were the key genes observed in the adipocyte samples from obese patients relative to the controls. Furthermore, nine potential therapeutic drugs (dasatinib, ocriplasmin, risperidone, gemfibrozil, ritonavir, fluvastatin, pravastatin, warfarin, atorvastatin) that target the key genes were also screened and selected. To conclude the key genes discovered (Lep, ApoE, Fyn, and FN1), as well as 9 candidate drugs, could be used as therapeutic targets in treating obesity.</p>","PeriodicalId":7226,"journal":{"name":"Adipocyte","volume":" ","pages":"1-10"},"PeriodicalIF":3.3,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/c4/ea/KADI_11_2013406.PMC8726706.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39770386","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Cancer cell-derived exosomal miR-425-3p induces white adipocyte atrophy. 癌细胞来源的外泌体miR-425-3p诱导白色脂肪细胞萎缩。
IF 3.3 4区 生物学
Adipocyte Pub Date : 2022-12-01 DOI: 10.1080/21623945.2022.2108558
Anwen Liu, Wenxia Pan, Shutong Zhuang, Yuanzhi Tang, Haitao Zhang
{"title":"Cancer cell-derived exosomal miR-425-3p induces white adipocyte atrophy.","authors":"Anwen Liu,&nbsp;Wenxia Pan,&nbsp;Shutong Zhuang,&nbsp;Yuanzhi Tang,&nbsp;Haitao Zhang","doi":"10.1080/21623945.2022.2108558","DOIUrl":"https://doi.org/10.1080/21623945.2022.2108558","url":null,"abstract":"<p><p>White adipose tissue wasting plays a critical role in the development and progression of cancer cachexia. However, the mechanism behind the loss of adipose tissue remains ill-defined. In this study, we found that cancer cell-derived exosomes highly expressed miR-425-3p. Administration of cancer cell-derived exosomes significantly inhibited proliferation and differentiation of human preadipocytes-viscereal (HPA-v) cells. In mature adipocytes, cancer cell-derived exosomes activated cAMP/PKA signalling and lipophagy, leading to adipocyte lipolysis and browning of white adipocytes. These exosomes-induced alterations were almost abolished by endocytosis inhibitor cytochalasin D (CytoD) and antagomiR-425-3p, or reproduced by miR-425-3p mimics. In addition, bioinformatics analysis and luciferase reporter assay revealed that miR-425-3p directly targeted proliferation-related genes such as <i>GATA2, IGFBP4, MMP15</i>, differentiation-related gene <i>CEBPA</i>, and phosphodiesterase 4B gene (<i>PDE4B</i>). Depletion of PDE4B enhanced cAMP/PKA signalling and lipophagy, but had no effects on HPA-v proliferation and differentiation. Taken together, these results suggested that cancer cell-derived exosomal miR-425-3p inhibited preadipocyte proliferation and differentiation, increased adipocyte lipolysis, and promoted browning of white adipocytes, all of which might contribute to adipocyte atrophy and ultimately the loss of adipose tissue in cancer cachexia.<b>Abbreviations:</b> ADPN: adiponectin; aP2: adipocyte protein 2 or fatty acid binding protein 4 (FABP4); BCA: bicinchoninic acid assay; BFA: bafilomycin A1; BMI: body mass index; C/EBP: CCAAT/enhancer binding protein; CEBPA: CCAAT/enhancer-binding protein-alpha; C-Exo: cancer cell-derived exosomes; CNTL: control; CREB: cAMP-response element binding protein; CytoD: cytochalasin D; ECL: chemiluminescence; GATA2: GATA Binding Protein 2; HFD: high fat diet; HSL: hormone-sensitive lipase; IGFBP4: insulin like growth factor binding protein 4; IRS-1: insulin receptor substrate-1; ISO: isoproterenol hydrochloride; KD: knockdown; KO: knock out; LC3: microtubule-associated protein 1A/1B-light chain 3; LMF: lipid mobilizing factor; LPL: lipoprotein lipase; MMP15: matrix metallopeptidase 15; Mir-Inh-C-Exo: cancer cell-derived exosomes with miR-425-3p inhibition; mTOR: mammalian target of rapamycin; Mut: mutant; N-Exo: normal cell-derived exosomes; NSCLC: non-small cell lung cancer; PBS, phosphate buffered saline; PGC-1: peroxisome proliferator-activated receptor-gamma coactivator-1; PDEs: phosphodiesterases; PKI: PKA inhibitor; PKA: cAMP-dependent protein kinase; PLIN1: Perilipin 1; PTHRP: parathyroid hormone-related protein; PVDF: polyvinylidene difluoride; shRNA: short hairpin RNA; UCP1: uncoupling protein 1; WT: wild type.</p>","PeriodicalId":7226,"journal":{"name":"Adipocyte","volume":" ","pages":"487-500"},"PeriodicalIF":3.3,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9367658/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40611171","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 12
PARP12 is required for mitochondrial function maintenance in thermogenic adipocytes. PARP12是产热脂肪细胞线粒体功能维持所必需的。
IF 3.3 4区 生物学
Adipocyte Pub Date : 2022-12-01 DOI: 10.1080/21623945.2022.2091206
Fan Hu, Chang Li, Yafen Ye, Xuhong Lu, Miriayi Alimujiang, Ningning Bai, Jingjing Sun, Xiaojing Ma, Xiaohua Li, Ying Yang
{"title":"PARP12 is required for mitochondrial function maintenance in thermogenic adipocytes.","authors":"Fan Hu,&nbsp;Chang Li,&nbsp;Yafen Ye,&nbsp;Xuhong Lu,&nbsp;Miriayi Alimujiang,&nbsp;Ningning Bai,&nbsp;Jingjing Sun,&nbsp;Xiaojing Ma,&nbsp;Xiaohua Li,&nbsp;Ying Yang","doi":"10.1080/21623945.2022.2091206","DOIUrl":"https://doi.org/10.1080/21623945.2022.2091206","url":null,"abstract":"<p><p>PARP12 is a member of poly-ADP-ribosyl polymerase (PARPs), which has been characterized for its antiviral function. Yet its physiological implication in adipocytes remains unknown. Here, we report a central function of PARP12 in thermogenic adipocytes. We show that PARP12 is highly expressed in brown adipose tissue and is mainly localized to the mitochondria. Knockdown of PARP12 in vitro reduced UCP1 expression. In parallel, the deficiency of PARP12 reduced mitochondrial respiration in adipocytes, while overexpression of PARP12 reversed these effects.</p>","PeriodicalId":7226,"journal":{"name":"Adipocyte","volume":" ","pages":"379-388"},"PeriodicalIF":3.3,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9351573/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40675288","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Associations of GHR, IGF-1 and IGFBP-3 expression in adipose tissue cells with obesity-related alterations in corresponding circulating levels and adipose tissue function in children. 儿童脂肪组织细胞中GHR、IGF-1和IGFBP-3表达与肥胖相关循环水平和脂肪组织功能改变的关系
IF 3.3 4区 生物学
Adipocyte Pub Date : 2022-12-01 DOI: 10.1080/21623945.2022.2148886
Elena Kempf, Kathrin Landgraf, Tim Vogel, Ulrike Spielau, Robert Stein, Matthias Raschpichler, Jürgen Kratzsch, Wieland Kiess, Juraj Stanik, Antje Körner
{"title":"Associations of <i>GHR, IGF-1</i> and <i>IGFBP-3</i> expression in adipose tissue cells with obesity-related alterations in corresponding circulating levels and adipose tissue function in children.","authors":"Elena Kempf,&nbsp;Kathrin Landgraf,&nbsp;Tim Vogel,&nbsp;Ulrike Spielau,&nbsp;Robert Stein,&nbsp;Matthias Raschpichler,&nbsp;Jürgen Kratzsch,&nbsp;Wieland Kiess,&nbsp;Juraj Stanik,&nbsp;Antje Körner","doi":"10.1080/21623945.2022.2148886","DOIUrl":"https://doi.org/10.1080/21623945.2022.2148886","url":null,"abstract":"<p><p>Components of the growth hormone (GH) axis, such as insulin-like growth factor-1 (IGF-1), IGF-1 binding protein-3 (IGFBP-3), GH receptor (GHR) and GH-binding protein (GHBP), regulate growth and metabolic pathways. Here, we asked if serum levels of these factors are altered with overweight/obesity and if this is related to adipose tissue (AT) expression and/or increased fat mass. Furthermore, we hypothesized that expression of <i>GHR, IGF-1</i> and <i>IGFBP-3</i> is associated with AT function. Serum GHBP levels were increased in children with overweight/obesity throughout childhood, while for IGF-1 levels and the IGF-1/IGFBP-3 molar ratio obesity-related elevations were detectable until early puberty. Circulating levels did not correlate with AT expression of these factors, which was decreased with overweight/obesity. Independent from obesity, expression of <i>GHR, IGF-1</i> and <i>IGFBP-3</i> was related to AT dysfunction,and increased insulin levels. Serum GHBP was associated with liver fat percentage and transaminase levels. We conclude that obesity-related elevations in serum GHBP and IGF-1 are unlikely to be caused by increased AT mass and elevations in GHBP are more closely related to liver status in children. The diminished AT expression of these factors with childhood obesity may contribute to early AT dysfunction and a deterioration of the metabolic state.</p>","PeriodicalId":7226,"journal":{"name":"Adipocyte","volume":"11 1","pages":"630-642"},"PeriodicalIF":3.3,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9683049/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10618079","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Plasminogen-derived peptide promotes adipogenic differentiation of preadipocytes in vitro and in vivo. 纤溶酶原衍生肽促进体内外前脂肪细胞的成脂分化。
IF 3.3 4区 生物学
Adipocyte Pub Date : 2022-12-01 DOI: 10.1080/21623945.2022.2149121
Hea Jung Yang, Jong-Ho Kim, Jung Hee Shim, Chan Yeong Heo
{"title":"Plasminogen-derived peptide promotes adipogenic differentiation of preadipocytes <i>in vitro</i> and <i>in vivo</i>.","authors":"Hea Jung Yang,&nbsp;Jong-Ho Kim,&nbsp;Jung Hee Shim,&nbsp;Chan Yeong Heo","doi":"10.1080/21623945.2022.2149121","DOIUrl":"https://doi.org/10.1080/21623945.2022.2149121","url":null,"abstract":"<p><p>Soft tissue defects caused by adipose tissue loss can result in various conditions such as lipodystrophy in congenital diseases, trauma secondary to ageing, and mastectomy in breast cancer; fat grafting is commonly performed to restore these defects. Although various enrichment strategies have been studied, novel therapeutics that are cost-effective, safe, technologically easy to manufacture, and minimally invasive are required. In this study, we identified a novel peptide derived from plasminogen, named plasminogen-derived peptide-1 (PLP-1), which showed adipogenic differentiation potential and led to an increase in the expression levels of adiponectin, C1Q and collagen domain containing protein, fatty acid-binding protein 4, and CCAAT/enhancer-binding protein-alpha. <i>In vivo</i> experiments confirmed an increase in the rate of adipocyte differentiation and the expression levels of CD31 in the PLP-1-treated mice groups. These results suggested that PLP-1 plays an important role in promoting the differentiation of preadipocytes and may be useful for developing therapeutic approaches to treat adipose tissue defects.</p>","PeriodicalId":7226,"journal":{"name":"Adipocyte","volume":"11 1","pages":"643-652"},"PeriodicalIF":3.3,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/0a/d2/KADI_11_2149121.PMC9718552.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10680029","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Insulin prevents fatty acid induced increase of adipocyte size. 胰岛素可防止脂肪酸引起的脂肪细胞增大。
IF 3.3 4区 生物学
Adipocyte Pub Date : 2022-12-01 DOI: 10.1080/21623945.2022.2107784
Emmanuelle Berger, Alain Géloën
{"title":"Insulin prevents fatty acid induced increase of adipocyte size.","authors":"Emmanuelle Berger,&nbsp;Alain Géloën","doi":"10.1080/21623945.2022.2107784","DOIUrl":"https://doi.org/10.1080/21623945.2022.2107784","url":null,"abstract":"<p><p>Metabolic disorders related to obesity are largely dependent on adipose tissue hypertrophy, which involves adipocyte hypertrophy and increased adipogenesis. Adiposize is regulated by lipid accumulation as a result of increased lipogenesis (mainly lipid uptake in mature adipocytes) and reduced lipolysis. Using realtime 2D cell culture analyses of lipid uptake, we show (1) that high glucose concentration (4.5 g/L) was required to accumulate oleic acid increasing lipid droplet size until unilocularization similar to mature adipocytes in few days, (2) oleic acid reduced <i>Peroxisome-Proliferator Activated Receptor Gamma</i> (<i>PPARG)</i> gene transcription and (3) insulin counteracted oleic acid-induced increase of lipid droplet size. Although the lipolytic activity observed in high <i>versus</i> low glucose (1 g/L) conditions was not altered, insulin was found to inhibit oleic acid induced gene transcription required for lipid storage such as Cell Death Inducing DFFA Like Effectors (CIDEC) and <i>G0S2 (</i>G0 switch gene S2), possibly through PPARA activity. Although this signalling pathway requires more detailed investigation, the results point out the differential mechanisms involved in the pro-adipogenic effect of insulin in absence <i>versus</i> its protective effect on adiposity in presence of oleic acid uptake.<b>Abbreviations</b>: AICAR, 5-Aminoimidazole-4-carboxamide-1-D-ribofuranoside; AMPK, AMP-Activated protein kinase, ASCs, adipose stem cell; ATGL, adipose triglyceride lipase; BSA, Bovine serum albumin; CEBPA, CCAAT enhancer binding protein alpha; CIDEs, Cell Death Inducing DFFA Like Effectors; dA, differentiated adipocyte; DMEM, Dulbecco's Modified Eagle's Medium; FABPs, Fatty Acid Binding Proteins; FAT/CD36, Fatty acid translocase; FCS, Foetal calf serum; FN1, fibronectin 1; FFA, free fatty acid; G0S2, G0 switch gene S2; GLUTs, Glucose transporters; GPR120, G protein-coupled receptor 120; HG, high glucose; HSL, hormone sensitive lipase; INSR, insulin receptor; LG, low glucose; OA, oleic acid; PBS, Phosphate buffer saline; PPARs, Peroxisome-Proliferator Activated Receptors; PKA, Protein kinase cyclic AMP-dependent; PKG, Protein kinase cyclic GMP dependent; PTGS2, cytochrome oxidase 2; RTCA, realtime cell analysis; TG, triglyceride.</p>","PeriodicalId":7226,"journal":{"name":"Adipocyte","volume":" ","pages":"510-528"},"PeriodicalIF":3.3,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9450899/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40682252","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信