AdipocytePub Date : 2022-12-01DOI: 10.1080/21623945.2022.2059902
Eve-Julie Tremblay, André Tchernof, Mélissa Pelletier, Nicolas Chabot, Denis R Joanisse, Pascale Mauriège
{"title":"Contribution of markers of adiposopathy and adipose cell size in predicting insulin resistance in women of varying age and adiposity.","authors":"Eve-Julie Tremblay, André Tchernof, Mélissa Pelletier, Nicolas Chabot, Denis R Joanisse, Pascale Mauriège","doi":"10.1080/21623945.2022.2059902","DOIUrl":"10.1080/21623945.2022.2059902","url":null,"abstract":"<p><p>Adipose tissue (AT) dysfunctions, such as adipocyte hypertrophy, macrophage infiltration and secretory adiposopathy (low plasma adiponectin/leptin, A/L, ratio), associate with metabolic disorders. However, no study has compared the relative contribution of these markers to cardiometabolic risk in women of varying age and adiposity. Body composition, regional AT distribution, lipid-lipoprotein profile, glucose homeostasis and plasma A and L levels were determined in 67 women (age: 40-62 years; BMI: 17-41 kg/m<sup>2</sup>). Expression of macrophage infiltration marker CD68 and adipocyte size were measured from subcutaneous abdominal (SCABD) and omental (OME) fat. AT dysfunction markers correlated with most lipid-lipoprotein levels. The A/L ratio was negatively associated with fasting insulinemia and HOMA-IR, while SCABD or OME adipocyte size and SCABD CD68 expression were positively related to these variables. Combination of tertiles of largest adipocyte size and lowest A/L ratio showed the highest HOMA-IR. Multiple regression analyses including these markers and TAG levels revealed that the A/L ratio was the only predictor of fasting insulinemia and HOMA-IR. The contribution of the A/L ratio was superseded by adipose cell size in the model where the latter replaced TAGs. Finally, leptinemia was a better predictor of IR than adipocyte size and the A/L ratio in our participants sample.</p>","PeriodicalId":7226,"journal":{"name":"Adipocyte","volume":"11 1","pages":"175-189"},"PeriodicalIF":3.5,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9037496/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42361120","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
AdipocytePub Date : 2022-12-01DOI: 10.1080/21623945.2022.2070949
Yifat Amir Levy, Theodore P Ciaraldi, Sunder R Mudaliar, Susan A Phillips, Robert R Henry
{"title":"Adipose tissue from subjects with type 2 diabetes exhibits impaired capillary formation in response to GROα: involvement of MMPs-2 and -9.","authors":"Yifat Amir Levy, Theodore P Ciaraldi, Sunder R Mudaliar, Susan A Phillips, Robert R Henry","doi":"10.1080/21623945.2022.2070949","DOIUrl":"10.1080/21623945.2022.2070949","url":null,"abstract":"<p><p>Type 2 Diabetes (T2D) is associated with impaired vascularization of adipose tissue (AT) . IL8, GROα and IL15 are pro-angiogenic myokines, secreted at elevated levels by T2D myotubes. We explored the direct impact of these myokines on AT vascularization. AT explants from subjects with T2D and without diabetes (non-diabetic, ND) were treated with rIL8, rGROα and rIL15 in concentrations equal to those in conditioned media (CM) from T2D and ND myotubes, and sprout formation evaluated. Endothelial cells (EC) were isolated from T2D and ND-AT, treated with rGROα and tube formation evaluated. Finally, we investigated the involvement of MMP-2 and -9 in vascularization. ND and T2D concentrations of IL8 or IL15 caused similar stimulation of sprout formation in ND- and T2D-AT. GROα exerted a similar effect in ND-AT. When T2D-AT explants were exposed to GROα, sprout formation in response to T2D concentrations was reduced compared to ND. Exposure of EC from T2D-AT to GROα at T2D concentrations resulted in reduced tube formation. Reduced responses to GROα in T2D-AT and EC were also seen for secretion of MMP-2 and -9. The data indicate that skeletal muscle can potentially regulate AT vascularization, with T2D-AT having impairments in sensitivity to GROα, while responding normally to IL8 and IL15.</p>","PeriodicalId":7226,"journal":{"name":"Adipocyte","volume":"11 1","pages":"276-286"},"PeriodicalIF":3.3,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9116416/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44810463","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Bioinformatics analysis to obtain critical genes regulated in subcutaneous adipose tissue after bariatric surgery.","authors":"Shuai Chen, Yicheng Jiang, Xiaoyang Qi, Peng Song, Liming Tang, Hanyang Liu","doi":"10.1080/21623945.2022.2115212","DOIUrl":"https://doi.org/10.1080/21623945.2022.2115212","url":null,"abstract":"<p><p>Bariatric surgery (BS) is a dependable method for managing obesity and metabolic diseases, however, the regulatory processes of lipid metabolism are still not well elucidated. Differentially expressed genes (DEGs) were analysed through three transcriptomic datasets of GSE29409, GSE59034 and GSE72158 from the GEO database regarding subcutaneous adipose tissue (SAT) after BS, and 37 DEGs were identified. The weighted gene co-expression network analysis (WGCNA), last absolute shrinkage and selection operator (LASSO) logistic regression and support vector machine-recursive feature elimination (SVM-RFE) algorithms further screened four key genes involved in the regulation of STMN2, SFRP4, APOE and MXRA5. The GSE53376 dataset was used to further confirm the differential expression of SFRP4, APOE and MXRA5 in the postoperative period. GSEA analysis reveals activation of immune-related regulatory pathways after surgery. Finally, the silencing of MXRA5 was found by experimental methods to affect the expression of PPARγ and CEBPα during the differentiation of preadipocytes, as well as to affect the formation of lipid droplets. In conclusion, SAT immunoregulation was mobilized after BS, while MXRA5 was involved in the regulation of lipid metabolism.</p>","PeriodicalId":7226,"journal":{"name":"Adipocyte","volume":"11 1","pages":"550-561"},"PeriodicalIF":3.3,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9427031/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10623124","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
AdipocytePub Date : 2022-12-01DOI: 10.1080/21623945.2022.2133415
Ana M Mesa, Theresa I Medrano, Vijay K Sirohi, William H Walker, Richard D Johnson, Sergei G Tevosian, Angie M Adkin, Paul S Cooke
{"title":"Identification and characterization of novel abdominal and pelvic brown adipose depots in mice.","authors":"Ana M Mesa, Theresa I Medrano, Vijay K Sirohi, William H Walker, Richard D Johnson, Sergei G Tevosian, Angie M Adkin, Paul S Cooke","doi":"10.1080/21623945.2022.2133415","DOIUrl":"https://doi.org/10.1080/21623945.2022.2133415","url":null,"abstract":"<p><p>Brown adipose tissue (BAT) generates heat through non-shivering thermogenesis, and increasing BAT amounts or activity could facilitate obesity treatment and provide metabolic benefits. In mice, BAT has been reported in perirenal, thoracic and cranial sites. Here, we describe new pelvic and lower abdominal BAT depots located around the urethra, internal reproductive and urinary tract organs and major lower pelvic blood vessels, as well as between adjacent muscles where the upper hind leg meets the abdominal cavity. Immunohistochemical, western blot and PCR analyses revealed that these tissues expressed BAT markers such as uncoupling protein 1 (UCP1) and CIDEA, but not white adipose markers, and β3-adrenergic stimulation increased UCP1 amounts, a classic characteristic of BAT tissue. The newly identified BAT stores contained extensive sympathetic innervation with high mitochondrial density and multilocular lipid droplets similar to interscapular BAT. BAT repositories were present and functional neonatally, and showed developmental changes between the neonatal and adult periods. In summary, several new depots showing classical BAT characteristics are reported and characterized in the lower abdominal/pelvic region of mice. These BAT stores are likely significant metabolic regulators in the mouse and some data suggests that similar BAT depots may also exist in humans.</p>","PeriodicalId":7226,"journal":{"name":"Adipocyte","volume":"11 1","pages":"616-629"},"PeriodicalIF":3.3,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9586652/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10625700","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
AdipocytePub Date : 2022-12-01DOI: 10.1080/21623945.2022.2104514
Fabiana Baganha, Ruby Schipper, Carolina E Hagberg
{"title":"Towards better models for studying human adipocytes <i>in vitro</i>.","authors":"Fabiana Baganha, Ruby Schipper, Carolina E Hagberg","doi":"10.1080/21623945.2022.2104514","DOIUrl":"https://doi.org/10.1080/21623945.2022.2104514","url":null,"abstract":"<p><p>With obesity and its comorbidities continuing to rise, we urgently need to improve our understanding of what mechanisms trigger the white adipose tissue to become dysfunctional in response to over-feeding. The recent invent of 3D culturing models has produced several noteworthy protocols for differentiating unilocular adipocytes <i>in vitro</i>, promising to revolutionize the obesity research field by providing more representative adipose tissue models for such mechanistic studies. In parallel, these 3D models provide important insights to how profoundly the microenvironment influences adipocyte differentiation and morphology. This commentary highlights some of the most recent 3D models, including <i>human unilocular vascularized adipocyte spheroids</i> (HUVASs), developed by our lab. We discuss recent developments in the field, provide further insights to the importance of the microvasculature for adipocyte maturation, and summarize what challenges remain to be solved before we can achieve a culture model that fully recapitulates all aspects of human white adipocyte biology <i>in vitro</i>. Taken together, the commentary highlights important recent advances regarding 3D adipocyte culturing and underlines the many advantages these models provide over traditional 2D cultures, with the aim of convincing more laboratories to switch to 3D models.</p>","PeriodicalId":7226,"journal":{"name":"Adipocyte","volume":" ","pages":"413-419"},"PeriodicalIF":3.3,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9331194/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40549899","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
AdipocytePub Date : 2022-12-01DOI: 10.1080/21623945.2022.2085417
Sara Cruciani, Giuseppe Garroni, Renzo Pala, Donatella Coradduzza, Maria Laura Cossu, Giorgio Carlo Ginesu, Giampiero Capobianco, Salvatore Dessole, Carlo Ventura, Margherita Maioli
{"title":"Metformin and vitamin D modulate adipose-derived stem cell differentiation towards the beige phenotype.","authors":"Sara Cruciani, Giuseppe Garroni, Renzo Pala, Donatella Coradduzza, Maria Laura Cossu, Giorgio Carlo Ginesu, Giampiero Capobianco, Salvatore Dessole, Carlo Ventura, Margherita Maioli","doi":"10.1080/21623945.2022.2085417","DOIUrl":"https://doi.org/10.1080/21623945.2022.2085417","url":null,"abstract":"<p><p>Adipose-derived stem cells (ADSCs) represent an ideal stem cell population for regenerative medicine. ADSC adipogenic differentiation is controlled by the activation of a specific transcriptional program, including epigenetic factors and key adipogenic genes. Under certain conditioned media, ADSCs can differentiate into several phenotypes. We previously demonstrated that bioactive molecules could counteract lipid accumulation and regulate adipogenesis, acting on inflammation and vitamin D metabolism. In the present paper, we aimed at evaluating the effect of metformin and vitamin D in targeting ADSC differentiation towards an intermediate phenotype, as beige adipocytes. We exposed ADSCs to different conditioned media and then we evaluated the levels of expression of main markers of adipogenesis, aP2, LPL and ACOT2. We also analysed the gene and protein expression of thermogenic UCP1 protein, and the expression of PARP1 and the beige specific marker TMEM26. Our results showed a novel effect of metformin and vitamin D not only in inhibiting adipogenesis, but also in inducing a specific 'brown-like' phenotype. These findings pave the way for their possible application in the control of <i>de novo</i> lipogenesis useful for the prevention of obesity and its related metabolic disorders.</p>","PeriodicalId":7226,"journal":{"name":"Adipocyte","volume":" ","pages":"356-365"},"PeriodicalIF":3.3,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9235891/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40240077","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"MRI-measured adipose features as predictive factors for detection of prostate cancer in males undergoing systematic prostate biopsy: a retrospective study based on a Chinese population.","authors":"Tianyu Xiong, Fang Cao, Guangyi Zhu, Xiaobo Ye, Yun Cui, Huibo Zhang, Yinong Niu","doi":"10.1080/21623945.2022.2148885","DOIUrl":"https://doi.org/10.1080/21623945.2022.2148885","url":null,"abstract":"<p><p>In this study, we retrospectively evaluated the data of 901 men undergoing ultrasonography-guided systematic prostate biopsy between March 2013 and May 2022. Adipose features, including periprostatic adipose tissue (PPAT) thickness and subcutaneous fat thickness, were measured using MRI before biopsy. Prediction models of all PCa and clinically significant PCa (csPCa) (Gleason score higher than 6) were established based on variables selected by multivariate logistic regression and prediction nomograms were constructed. Patients with PCa had higher PPAT thickness (4.64 [3.65-5.86] vs. 3.54 [2.49-4.51] mm, <i>p</i> < 0.001) and subcutaneous fat thickness (29.19 [23.05-35.95] vs. 27.90 [21.43-33.93] mm, <i>p</i> = 0.013) than those without PCa. Patients with csPCa had higher PPAT thickness (4.78 [3.80-5.88] vs. 4.52 [3.80-5.63] mm, <i>p</i> = 0.041) than those with non-csPCa. Adding adipose features to the prediction models significantly increased the area under the receiver operating characteristics curve for the prediction of all PCa (0.850 <i>vs</i>. 0.819, <i>p</i> < 0.001) and csPCa (0.827 <i>vs</i>. 0.798, <i>p</i> < 0.001). Based on MRI-measured adipose features and clinical parameters, we established two nomograms that were simple to use and could improve patient selection for prostate biopsy in Chinese population.</p>","PeriodicalId":7226,"journal":{"name":"Adipocyte","volume":"11 1","pages":"653-664"},"PeriodicalIF":3.3,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9704414/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10627035","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
AdipocytePub Date : 2022-12-01DOI: 10.1080/21623945.2022.2102116
Fozia Ahmed, Susanne Hetty, Milica Vranic, Giovanni Fanni, Joel Kullberg, Maria João Pereira, Jan W Eriksson
{"title":"<i>ESR2</i> expression in subcutaneous adipose tissue is related to body fat distribution in women, and knockdown impairs preadipocyte differentiation.","authors":"Fozia Ahmed, Susanne Hetty, Milica Vranic, Giovanni Fanni, Joel Kullberg, Maria João Pereira, Jan W Eriksson","doi":"10.1080/21623945.2022.2102116","DOIUrl":"https://doi.org/10.1080/21623945.2022.2102116","url":null,"abstract":"<p><p>Oestrogen receptor 2 (<i>ESR2</i>) expression has been shown to be higher in subcutaneous adipose tissue (SAT) from postmenopausal compared to premenopausal women. The functional significance of altered <i>ESR2</i> expression is not fully known. This study investigates the role of <i>ESR2</i> for adipose tissue lipid and glucose metabolism. SAT biopsies were obtained from 44 female subjects with or without T2D. Gene expression of <i>ESR2</i> and markers of adipose function and metabolism was assessed. <i>ESR2</i> knockdown was performed using CRISPR/Cas9 in preadipocytes isolated from SAT of females, and differentiation rate, lipid storage, and glucose uptake were measured.<i>ESR2</i> expression was inversely correlated with measures of central obesity and expression of some fatty acid oxidation markers, and positively correlated with lipid storage and glucose transport markers. Differentiation was reduced in <i>ESR2</i> knockdown preadipocytes. This corresponded to reduced expression of markers of differentiation and lipogenesis. Glucose uptake was reduced in knockdown adipocytes.Our results indicate that <i>ESR2</i> deficiency in women is associated with visceral adiposity and impaired subcutaneous adipocyte differentiation as well as glucose and lipid utilization. High <i>ESR2</i> expression, as seen after menopause, could be a contributing factor to SAT expansion. This may support a possible target to promote a healthy obesity phenotype.</p>","PeriodicalId":7226,"journal":{"name":"Adipocyte","volume":" ","pages":"434-447"},"PeriodicalIF":3.3,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9387337/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40608992","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Adipose endothelial cells mastering adipose tissues metabolic fate.","authors":"Zhe-Zhen Liao, Li Ran, Xiao-Yan Qi, Ya-Di Wang, Yuan-Yuan Wang, Jing Yang, Jiang-Hua Liu, Xin-Hua Xiao","doi":"10.1080/21623945.2022.2028372","DOIUrl":"https://doi.org/10.1080/21623945.2022.2028372","url":null,"abstract":"<p><p>Dynamic communication within adipose tissue depends on highly vascularized structural characteristics to maintain systemic metabolic homoeostasis. Recently, it has been noted that adipose endothelial cells (AdECs) act as essential bridges for biological information transmission between adipose-resident cells. Hence, paracrine regulators that mediate crosstalk between AdECs and adipose stromal cells were summarized. We also highlight the importance of AdECs to maintain adipocytes metabolic homoeostasis by regulating insulin sensitivity, lipid turnover and plasticity. The differential regulation of AdECs in adipose plasticity often depends on vascular density and metabolic states. Although choosing pro-angiogenic or anti-angiogenic therapies for obesity is still a matter of debate in clinical settings, the growing numbers of drugs have been confirmed to play an anti-obesity effect by affecting vascularization. Pharmacologic angiogenesis intervention has great potential as therapeutic strategies for obesity.</p>","PeriodicalId":7226,"journal":{"name":"Adipocyte","volume":" ","pages":"108-119"},"PeriodicalIF":3.3,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8786343/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39850418","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
AdipocytePub Date : 2022-12-01DOI: 10.1080/21623945.2022.2104512
Jie Wen, Liwen Wang
{"title":"Identification of key genes and their association with immune infiltration in adipose tissue of obese patients: a bioinformatic analysis.","authors":"Jie Wen, Liwen Wang","doi":"10.1080/21623945.2022.2104512","DOIUrl":"https://doi.org/10.1080/21623945.2022.2104512","url":null,"abstract":"<p><p>Immune cell-mediated adipose tissue (AT) inflammation contributes to obesity-related metabolic disorders, but the precise underlying mechanisms remain largely elusive. In this study, we used the R software to screen key differentially expressed genes (DEGs) in AT from lean and obese individuals and conducted function enrichment analysis. We then analysed their PPI network by using the STRING database. Hub genes were screened by cytohubba plugin. Subsequently, CIBERSORTx was used to predict the proportion of immune cells in AT from lean and obese subjects. Finally, the correlation between hub genes and immune cell proportions was analysed. These studies identified 290 DEGs in the AT between lean and obese subjects. Among them, <i>IL6, CCL19, CXCL8, CXCL12, CCL2, CCL3, CCL4, CXCL2, IL1B</i>, and <i>CXCL1</i> were proved to be hub genes in regulating the protein-protein interaction (PPI) network. We also found that <i>CXCL8</i> is positively correlated with resting NK cells, monocytes, activated mast cells, and eosinophils, but negatively correlated with CD8<sup>+</sup> T cells and activated NK cells in obese individuals. Taken together, our study identified key genes in AT that are correlated with immune cell infiltration, uncovering potential new targets for the prevention and treatment of obesity and its related complications via regulating the immune microenvironment.</p>","PeriodicalId":7226,"journal":{"name":"Adipocyte","volume":" ","pages":"401-412"},"PeriodicalIF":3.3,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9336476/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40550975","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}