Adipocyte最新文献

筛选
英文 中文
Bioinformatics analysis identifies key secretory protein-encoding differentially expressed genes in adipose tissue of metabolic syndrome. 生物信息学分析鉴定代谢综合征脂肪组织中关键分泌蛋白编码差异表达基因。
IF 3.5 4区 生物学
Adipocyte Pub Date : 2025-12-01 Epub Date: 2025-01-16 DOI: 10.1080/21623945.2024.2446243
Jiandong Zhou, Yunshan Guo, Xuan Liu, Weijie Yuan
{"title":"Bioinformatics analysis identifies key secretory protein-encoding differentially expressed genes in adipose tissue of metabolic syndrome.","authors":"Jiandong Zhou, Yunshan Guo, Xuan Liu, Weijie Yuan","doi":"10.1080/21623945.2024.2446243","DOIUrl":"10.1080/21623945.2024.2446243","url":null,"abstract":"<p><p>The objective of this study was to identify key secretory protein-encoding differentially expressed genes (SP-DEGs) in adipose tissue in female metabolic syndrome, thus detecting potential targets in treatment. We examined gene expression profiles in 8 women with metabolic syndrome and 7 healthy, normal body weight women. A total of 143 SP-DEGs were screened, including 83 upregulated genes and 60 downregulated genes. GO analyses of these SP-DEGs included proteolysis, angiogenesis, positive regulation of endothelial cell proliferation, immune response, protein processing, positive regulation of neuroblast proliferation, cell adhesion and ER to Golgi vesicle-mediated transport. KEGG pathway analysis of the SP-DEGs were involved in the TGF-beta signalling pathway, cytokine‒cytokine receptor interactions, the hippo signalling pathway, Malaria. Two modules were identified from the PPI network, namely, Module 1 (DNMT1, KDM1A, NCoR1, and E2F1) and Module 2 (IL-7 R, IL-12A, and CSF3). The gene DNMT1 was shared between the network modules and the WGCNA brown module. According to the single-gene GSEA results, DNMT1 was significantly positively correlated with histidine metabolism and phenylalanine metabolism. This study identified 7 key SP-DEGs in adipose tissue. DNMT1 was selected as the central gene in the development of metabolic syndrome and might be a potential therapeutic target.</p>","PeriodicalId":7226,"journal":{"name":"Adipocyte","volume":"14 1","pages":"2446243"},"PeriodicalIF":3.5,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142998259","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
miR-6402 targets Bmpr2 and negatively regulates mouse adipogenesis. miR-6402靶向Bmpr2,负调控小鼠脂肪生成。
IF 3.5 4区 生物学
Adipocyte Pub Date : 2025-12-01 Epub Date: 2025-03-03 DOI: 10.1080/21623945.2025.2474114
Malaz Elsheikh, Tomomi Sano, Akiko Mizokami, Yusuke Nakatsu, Tomoichiro Asano, Takashi Kanematsu
{"title":"miR-6402 targets <i>Bmpr2</i> and negatively regulates mouse adipogenesis.","authors":"Malaz Elsheikh, Tomomi Sano, Akiko Mizokami, Yusuke Nakatsu, Tomoichiro Asano, Takashi Kanematsu","doi":"10.1080/21623945.2025.2474114","DOIUrl":"10.1080/21623945.2025.2474114","url":null,"abstract":"<p><p>Obesity is characterized by macrophage infiltration into adipose tissue. White adipose tissue remodelling under inflammatory conditions involves both hypertrophy and adipogenesis and is regulated by transcription factors, which are influenced by bone morphogenetic protein (BMP) signalling. MicroRNAs (miRNAs) regulate gene expression and are involved in obesity-related processes such as adipogenesis. Therefore, we identified differentially expressed miRNAs in the epididymal white adipose tissue (eWAT) of mice fed a normal diet (ND) and those fed a high-fat diet (HFD). The expression of miR-6402 was significantly suppressed in the inflamed eWAT of HFD-fed mice than in ND-fed mice. Furthermore, <i>Bmpr2</i>, the receptor for BMP4, was identified as a target gene of miR-6402. Consistently, miR-6402 was downregulated in the inflamed eWAT of HFD-fed mice and in 3T3-L1 cells (preadipocytes) and differentiated 3T3-L1 cells (mature adipocytes) , and BMPR2 expression in these cells was upregulated. Adipogenesis was induced in WAT by BMP4 injection (<i>in vivo</i>) and in 3T3-L1 cells by BMP4 stimulation (<i>in vitro</i>), both of which were inhibited by miR-6402 transfection. Inflamed eWAT showed higher expression of BMPR2 and the adipogenesis markers C/EBPβ and PPARγ, which was suppressed by miR-6402 transfection. Our findings suggest that miR-6402 is a novel anti-adipogenic miRNA that combats obesity by inhibiting the BMP4/BMPR2 signalling pathway and subsequently reducing adipose tissue expansion.</p>","PeriodicalId":7226,"journal":{"name":"Adipocyte","volume":"14 1","pages":"2474114"},"PeriodicalIF":3.5,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11881869/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143539782","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Correlation analysis of key genes and immune infiltration in visceral adipose tissue and subcutaneous adipose tissue of patients with type 2 diabetes in women. 女性2型糖尿病患者内脏脂肪组织和皮下脂肪组织关键基因与免疫浸润的相关性分析
IF 3.5 4区 生物学
Adipocyte Pub Date : 2025-12-01 Epub Date: 2024-12-24 DOI: 10.1080/21623945.2024.2442419
Qian Shi, Yongxin Li, Chunyan Liu, Mengjie Liang, Hefei Zha, Xin Zhang, Fuchun Zhang
{"title":"Correlation analysis of key genes and immune infiltration in visceral adipose tissue and subcutaneous adipose tissue of patients with type 2 diabetes in women.","authors":"Qian Shi, Yongxin Li, Chunyan Liu, Mengjie Liang, Hefei Zha, Xin Zhang, Fuchun Zhang","doi":"10.1080/21623945.2024.2442419","DOIUrl":"https://doi.org/10.1080/21623945.2024.2442419","url":null,"abstract":"<p><p>Immune cell infiltration into adipose tissue (AT) is a key factor in type 2 diabetes (T2DM). However, research on the impact of fat distribution on immune cells and immune responses in women is still lacking. This study used enrichment, protein-protein interaction network, immune cell infiltration, and correlation analysis to compare the similarities and differences between the transcriptome data of visceral AT (VAT) and subcutprotein-proteinaneous AT (SAT) obtained from the omprehensive database of gene expression in women with non-T2DM and T2DM. DEGs with the same biological function in two types of ATs often exhibited different expression trends. SharedVAT-specific and SAT-specific hub genes were mainly associated with transcription factors, monocyte-macrophage markers, and chemokines, respectively. Immune cells affected by both AT types included monocytes, granulocytes, T and B lymphocytes, and NK cells. VAT affected more immune cells, mainly myeloid cells. Shared hub genes in VAT correlated positively with M1 macrophages, suggesting pro-inflammatory effects, while those in SAT correlated negatively with M1 macrophages and lymphocytes, suggesting anti-inflammatory effects. This study provides a theoretical basis for further understanding the correlation between AT and T2DM in women.</p>","PeriodicalId":7226,"journal":{"name":"Adipocyte","volume":"14 1","pages":"2442419"},"PeriodicalIF":3.5,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142881051","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Atoh8 expression inhibition promoted osteogenic differentiation of ADSCs and inhibited cell proliferation in vitro and rat bone defect models. Atoh8表达抑制促进ADSCs成骨分化,抑制体外及大鼠骨缺损模型细胞增殖。
IF 3.5 4区 生物学
Adipocyte Pub Date : 2025-12-01 Epub Date: 2025-05-12 DOI: 10.1080/21623945.2025.2494089
Zian Yi, Shuang Song, Yuxin Bai, Guanhua Zhang, Yuxi Wang, Zijun Chen, Xuefeng Chen, Banglian Deng, Xiangdong Liu, Zuolin Jin
{"title":"Atoh8 expression inhibition promoted osteogenic differentiation of ADSCs and inhibited cell proliferation in vitro and rat bone defect models.","authors":"Zian Yi, Shuang Song, Yuxin Bai, Guanhua Zhang, Yuxi Wang, Zijun Chen, Xuefeng Chen, Banglian Deng, Xiangdong Liu, Zuolin Jin","doi":"10.1080/21623945.2025.2494089","DOIUrl":"10.1080/21623945.2025.2494089","url":null,"abstract":"<p><p>Stem cell-based bone tissue engineering offers a promising approach for treating oral and cranio-maxillofacial bone defects. This study investigated the role of Atoh8, a key regulator in various cells, in the osteogenic potential of adipose-derived stem cells (ADSCs). ADSCs transfected with small interfering RNA (siRNA) targeting Atoh8 were evaluated for proliferation, migration, adhesion, and osteogenic capacity. In vivo, 20 SD rats were used to assess bone regeneration using Atoh8-knockdown ADSC sheets, with new bone formation quantified via micro-CT and histological analysis. Atoh8 knockdown in vitro reduced ADSC proliferation and migration but enhanced osteogenic differentiation and upregulation of osteogenic-related factors. This approach improved bone healing in rat defect models, accelerating repair both in vitro and in vivo. The findings underscore the clinical potential of ADSCs in bone tissue engineering and elucidate Atoh8's regulatory role in ADSC osteogenesis, providing a novel therapeutic strategy for enhancing bone regeneration through targeted modulation of stem cell differentiation pathways.</p>","PeriodicalId":7226,"journal":{"name":"Adipocyte","volume":"14 1","pages":"2494089"},"PeriodicalIF":3.5,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12077435/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143961412","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Disrupted adipokine secretion and inflammatory responses in human adipocyte hypertrophy. 人脂肪细胞肥大中脂肪因子分泌中断和炎症反应。
IF 3.5 4区 生物学
Adipocyte Pub Date : 2025-12-01 Epub Date: 2025-04-03 DOI: 10.1080/21623945.2025.2485927
Dan Gao, Chen Bing, Helen R Griffiths
{"title":"Disrupted adipokine secretion and inflammatory responses in human adipocyte hypertrophy.","authors":"Dan Gao, Chen Bing, Helen R Griffiths","doi":"10.1080/21623945.2025.2485927","DOIUrl":"10.1080/21623945.2025.2485927","url":null,"abstract":"<p><p>Adipocyte hypertrophy is a critical contributor to obesity-induced inflammation and insulin resistance. This study employed a human adipocyte hypertrophy model to investigate the adipokine release, inflammatory responses, and the intracellular singling pathways. Hypertrophic adipocytes exhibited increased lipid content and lipolysis, a decline of anti-inflammatory adipokine adiponectin release and an increase of pro-inflammatory adipokine leptin release compared to mature adipocytes. Moreover, TNFα and LPS exacerbated the decrease in adiponectin secretion by hypertrophic adipocytes while promoting the secretion of leptin, MCP-1 and IL-6, which is associated with impaired activation of p38 and JNK MAPK and persistent activation of ERK and IκBα in hypertrophic adipocytes. These altered adipokine secretions and inflammatory responses within hypertrophic adipocytes may contribute to adipocyte dysfunction in human obesity.</p>","PeriodicalId":7226,"journal":{"name":"Adipocyte","volume":"14 1","pages":"2485927"},"PeriodicalIF":3.5,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11980453/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143771183","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Adipose tissue and adipose-derived stromal cells can reduce skin contraction in an in vitro tissue engineered full thickness skin model. 在体外组织工程全层皮肤模型中,脂肪组织和脂肪来源的基质细胞可以减少皮肤收缩。
IF 3.5 4区 生物学
Adipocyte Pub Date : 2025-12-01 Epub Date: 2025-03-19 DOI: 10.1080/21623945.2025.2473367
Victoria L Workman, Anna-Victoria Giblin, Nicola H Green, Sheila MacNeil, Vanessa Hearnden
{"title":"Adipose tissue and adipose-derived stromal cells can reduce skin contraction in an <i>in vitro</i> tissue engineered full thickness skin model.","authors":"Victoria L Workman, Anna-Victoria Giblin, Nicola H Green, Sheila MacNeil, Vanessa Hearnden","doi":"10.1080/21623945.2025.2473367","DOIUrl":"10.1080/21623945.2025.2473367","url":null,"abstract":"<p><p>Skin contracts during wound healing to facilitate wound closure. In some patients, skin contraction can lead to the formation of skin contractures that limit movement, impair function, and significantly impact well-being. Current treatment options for skin contractures are burdensome for patients, and there is a high risk of recurrence. Autologous fat grafting can improve the structure and function of scarred skin; however, relatively little is known about the effect of fat on skin contraction. In this study, an in vitro tissue-engineered model of human skin was used to test the effects of adipose tissue and adipose-derived stromal cells on skin contraction. Untreated tissue-engineered skin contracted to approximately 60% of the original area over 14 days in culture. The addition of adipose tissue reduced this contraction by 50%. Adipose tissue, which was emulsified or concentrated and high doses of adipose-derived stromal cells (ADSC) were able to inhibit contraction to a similar degree; however, lower doses of ADSC did not show the same effect. In conclusion, the subcutaneous application of adipose tissue has the potential to inhibit skin contraction. This study provides in vitro evidence to support the use of autologous fat grafting to prevent skin contraction in patients most at risk.</p>","PeriodicalId":7226,"journal":{"name":"Adipocyte","volume":"14 1","pages":"2473367"},"PeriodicalIF":3.5,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143655606","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Pharmacological inhibition of SUMOylation with TAK-981 mimics genetic HypoSUMOylation in murine perigonadal white adipose tissue. TAK-981在小鼠性腺周围白色脂肪组织中模拟基因低SUMOylation的药理抑制作用。
IF 3.5 4区 生物学
Adipocyte Pub Date : 2025-12-01 Epub Date: 2025-03-06 DOI: 10.1080/21623945.2025.2474107
Damien Dufour, Xu Zhao, Florian Chaleil, Patrizia Maria Christiane Nothnagel, Magnar Bjørås, Anne-Marie Lefrançois-Martinez, Antoine Martinez, Pierre Chymkowitch
{"title":"Pharmacological inhibition of SUMOylation with TAK-981 mimics genetic HypoSUMOylation in murine perigonadal white adipose tissue.","authors":"Damien Dufour, Xu Zhao, Florian Chaleil, Patrizia Maria Christiane Nothnagel, Magnar Bjørås, Anne-Marie Lefrançois-Martinez, Antoine Martinez, Pierre Chymkowitch","doi":"10.1080/21623945.2025.2474107","DOIUrl":"10.1080/21623945.2025.2474107","url":null,"abstract":"<p><p>Post-translational modification by the small ubiquitin-like modifier (SUMO) is essential for cellular differentiation and homeostasis. Here, we investigate the role of SUMOylation in adipose tissue development using TAK-981, a pharmacological inhibitor of SUMOylation. Administration of TAK-981 to mice resulted in significant defect in weight gain and adipocyte atrophy in perigonadal white adipose tissue (gWAT) depots. Gene expression analyses revealed a marked downregulation of adipogenic genes, including <i>Pparg</i>, <i>Cebpa</i>, and <i>Fasn</i>. Our data thus indicate that TAK-981 treatment impaired adipogenesis in gWAT, consistent with prior findings that SUMOylation supports transcriptional regulation of adipogenesis and lipid metabolism. We also found significant infiltration of immune cells and efferocytosis in gWAT. Our results thus indicate that SUMOylation inhibition using a small molecule phenocopies genetic hypoSUMOylation models, highlighting its critical role in maintaining adipocyte functionality and immune environment. These findings provide evidence that SUMOylation is essential for fat accumulation <i>in vivo</i>. Furthermore, given that TAK-981 is currently under clinical evaluation for the treatment of solid tumors, our results underscore the importance of considering the potential unintended effects of SUMOylation inhibition on adipose tissue in patients.</p>","PeriodicalId":7226,"journal":{"name":"Adipocyte","volume":"14 1","pages":"2474107"},"PeriodicalIF":3.5,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11901380/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143565578","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Adipogenic dedifferentiation enhances survival of human umbilical cord-derived mesenchymal stem cells under oxidative stress. 脂肪源性去分化增强氧化应激下人脐带间充质干细胞的存活。
IF 3.5 4区 生物学
Adipocyte Pub Date : 2025-12-01 Epub Date: 2025-02-20 DOI: 10.1080/21623945.2025.2467150
Yin Yuan, Meina Kuang, Tengye Yu, Sirui Huang, Fujie Jiang, Biyi Lu, Mingen Cai, Xin Lu
{"title":"Adipogenic dedifferentiation enhances survival of human umbilical cord-derived mesenchymal stem cells under oxidative stress.","authors":"Yin Yuan, Meina Kuang, Tengye Yu, Sirui Huang, Fujie Jiang, Biyi Lu, Mingen Cai, Xin Lu","doi":"10.1080/21623945.2025.2467150","DOIUrl":"10.1080/21623945.2025.2467150","url":null,"abstract":"<p><p>Mesenchymal stem cells (MSCs) serve as ideal candidates for a broad range of cell-based therapies. However, cell ageing caused by long-term in vitro expansion and poor survival after in vivo delivery greatly limits their success in preclinical and clinical applications. Dedifferentiation represents a potential strategy for enhancing the retention and function of MSCs in hostile environments. In this study, we evaluated the cell phenotype, proliferation, and differentiation potential, as well as the anti-oxidative stress ability of human umbilical cord-derived MSCs (hMSCs) manipulated with adipogenic priming and subsequent dedifferentiation. After an in vitro differentiation and dedifferentiation procedure, the resultant dedifferentiated hMSCs (De-hMSCs) displayed properties similar to their original counterparts, including immunophenotype and mesodermal potential. Upon re-induction, De-hMSCs exhibited a significantly higher adipogenic differentiation capability than unmanipulated hMSCs. Importantly, De-hMSCs showed a significantly enhanced ability to resist tert-butyl hydroperoxide (t-BHP) induced apoptosis compared to undifferentiated hMSCs. Mechanisms involving bcl-2 family proteins and autophagy may contribute to the demonstrated advantages of dedifferentiation-reprogrammed hMSCs. These results indicate that adipogenic dedifferentiation promotes adipogenesis and cell persistence, as well as preserves the stemness of human umbilical cord-derived MSCs that have been committed to the adipocytic lineage. As a unique stem cell population, dedifferentiated MSCs may represent an attractive and promising candidate for MSC-based therapy.</p>","PeriodicalId":7226,"journal":{"name":"Adipocyte","volume":"14 1","pages":"2467150"},"PeriodicalIF":3.5,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11845070/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143456410","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Association of adipose tissue infiltration with cardiac function: scoping review. 脂肪组织浸润与心脏功能的关系:范围回顾。
IF 3.5 4区 生物学
Adipocyte Pub Date : 2025-12-01 Epub Date: 2025-04-10 DOI: 10.1080/21623945.2025.2489467
Mansour M Alotaibi, Naif Z Alrashdi, Marzouq K Almutairi Pt, Mohammed M Alqahtani, Anwar B Almutairi, Sami M Alqahtani, Hamoud M Alajel, Amani K Bajunayd
{"title":"Association of adipose tissue infiltration with cardiac function: scoping review.","authors":"Mansour M Alotaibi, Naif Z Alrashdi, Marzouq K Almutairi Pt, Mohammed M Alqahtani, Anwar B Almutairi, Sami M Alqahtani, Hamoud M Alajel, Amani K Bajunayd","doi":"10.1080/21623945.2025.2489467","DOIUrl":"https://doi.org/10.1080/21623945.2025.2489467","url":null,"abstract":"<p><p>Evidence suggests that adipose tissue (AT) infiltration in skeletal muscles may negatively influence cardiac function, yet its use as a biomarker remains unclear. This scoping review examined the relationship between AT infiltration and cardiac function in adults. A systematic search of PubMed, CINAHL and SCOPUS identified peer-reviewed studies reporting AT infiltration and cardiac function measures. Excluded were review-type studies, animal studies, abstracts and case series. Study quality was assessed using the Study Quality Assessment Tool (SQAT). Three good-quality studies were included. Findings demonstrated a negative association between AT infiltration and cardiac function parameters, including exercise capacity, left ventricular ejection fraction (LVEF) and heart failure events, in cancer survivors and healthy individuals. There is evidence supporting an association between increased AT infiltration of skeletal muscles and impaired cardiac function, highlighting the need for further research to validate AT infiltration as a potential biomarker. Despite the limited available studies, our findings highlight a distinct association between skeletal muscle AT infiltration and cardiac dysfunction, independent of general obesity.</p>","PeriodicalId":7226,"journal":{"name":"Adipocyte","volume":"14 1","pages":"2489467"},"PeriodicalIF":3.5,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11988230/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143965655","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
One-year metreleptin in Colombian sisters with congenital leptin deficiency. 患有先天性瘦素缺乏症的哥伦比亚姐妹服用一年的美曲瘦素。
IF 3.5 4区 生物学
Adipocyte Pub Date : 2025-12-01 Epub Date: 2025-05-26 DOI: 10.1080/21623945.2025.2508188
Hernan Yupanqui-Lozno, Jancy Andrea Huertas-Quintero, Maria E Yupanqui-Velazco, Rocío A Salinas-Osornio, Carlos M Restrepo, Adriana Gonzalez, Edna J Nava-Gonzalez, Luis G Celis-Regalado, Constanza Neri Morales, Victor M Hernandez-Escalante, Julio Licinio, Hugo A Laviada-Molina, Ernesto Rodriguez-Ayala, Carlos Arango, Raul A Bastarrachea
{"title":"One-year metreleptin in Colombian sisters with congenital leptin deficiency.","authors":"Hernan Yupanqui-Lozno, Jancy Andrea Huertas-Quintero, Maria E Yupanqui-Velazco, Rocío A Salinas-Osornio, Carlos M Restrepo, Adriana Gonzalez, Edna J Nava-Gonzalez, Luis G Celis-Regalado, Constanza Neri Morales, Victor M Hernandez-Escalante, Julio Licinio, Hugo A Laviada-Molina, Ernesto Rodriguez-Ayala, Carlos Arango, Raul A Bastarrachea","doi":"10.1080/21623945.2025.2508188","DOIUrl":"10.1080/21623945.2025.2508188","url":null,"abstract":"<p><p>We discovered two adult sisters in Colombia, lineally consanguineous, with severe obesity and undetectable serum leptin levels despite markedly elevated body fat. Their clinical profile included childhood-onset extreme weight gain, intense hunger, hyperphagia, hypogonadotropic hypogonadism, and family history of obesity. Direct sequencing of the LEP gene revealed a novel homozygous missense mutation in exon 3 (c.350G>T [p.C117F]). The presence of this mutation, undetectable leptin, and severe obesity confirmed a diagnosis of monogenic leptin deficiency. Here we describe the clinical outcomes of a 12-month treatment with recombinant human leptin (metreleptin). Metabolic and endocrine assessments were conducted before and after therapy. Metreleptin therapy significantly reduced BMI: from 59 to 38 kg/m<sup>2</sup> (OBX1, age 27) and 60 to 48 kg/m<sup>2</sup> (OBX2, age 24). Total body fat mass decreased, serum lipids normalized, and insulin sensitivity improved. Hypogonadotropic hypogonadism reversed, and menstruation resumed. Thus, metreleptin reversed the major metabolic and endocrine abnormalities associated with leptin deficiency in these sisters. Limitations include the small sample size, absence of a control group, and lack of anti-metreleptin antibody measurements. Nevertheless, our findings support that leptin replacement with metreleptin is currently the only effective hormonal treatment for this monogenic form of human obesity.</p>","PeriodicalId":7226,"journal":{"name":"Adipocyte","volume":"14 1","pages":"2508188"},"PeriodicalIF":3.5,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12118419/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144141245","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信