AdipocytePub Date : 2025-12-01Epub Date: 2025-01-16DOI: 10.1080/21623945.2024.2446243
Jiandong Zhou, Yunshan Guo, Xuan Liu, Weijie Yuan
{"title":"Bioinformatics analysis identifies key secretory protein-encoding differentially expressed genes in adipose tissue of metabolic syndrome.","authors":"Jiandong Zhou, Yunshan Guo, Xuan Liu, Weijie Yuan","doi":"10.1080/21623945.2024.2446243","DOIUrl":"10.1080/21623945.2024.2446243","url":null,"abstract":"<p><p>The objective of this study was to identify key secretory protein-encoding differentially expressed genes (SP-DEGs) in adipose tissue in female metabolic syndrome, thus detecting potential targets in treatment. We examined gene expression profiles in 8 women with metabolic syndrome and 7 healthy, normal body weight women. A total of 143 SP-DEGs were screened, including 83 upregulated genes and 60 downregulated genes. GO analyses of these SP-DEGs included proteolysis, angiogenesis, positive regulation of endothelial cell proliferation, immune response, protein processing, positive regulation of neuroblast proliferation, cell adhesion and ER to Golgi vesicle-mediated transport. KEGG pathway analysis of the SP-DEGs were involved in the TGF-beta signalling pathway, cytokine‒cytokine receptor interactions, the hippo signalling pathway, Malaria. Two modules were identified from the PPI network, namely, Module 1 (DNMT1, KDM1A, NCoR1, and E2F1) and Module 2 (IL-7 R, IL-12A, and CSF3). The gene DNMT1 was shared between the network modules and the WGCNA brown module. According to the single-gene GSEA results, DNMT1 was significantly positively correlated with histidine metabolism and phenylalanine metabolism. This study identified 7 key SP-DEGs in adipose tissue. DNMT1 was selected as the central gene in the development of metabolic syndrome and might be a potential therapeutic target.</p>","PeriodicalId":7226,"journal":{"name":"Adipocyte","volume":"14 1","pages":"2446243"},"PeriodicalIF":3.5,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142998259","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"miR-6402 targets <i>Bmpr2</i> and negatively regulates mouse adipogenesis.","authors":"Malaz Elsheikh, Tomomi Sano, Akiko Mizokami, Yusuke Nakatsu, Tomoichiro Asano, Takashi Kanematsu","doi":"10.1080/21623945.2025.2474114","DOIUrl":"10.1080/21623945.2025.2474114","url":null,"abstract":"<p><p>Obesity is characterized by macrophage infiltration into adipose tissue. White adipose tissue remodelling under inflammatory conditions involves both hypertrophy and adipogenesis and is regulated by transcription factors, which are influenced by bone morphogenetic protein (BMP) signalling. MicroRNAs (miRNAs) regulate gene expression and are involved in obesity-related processes such as adipogenesis. Therefore, we identified differentially expressed miRNAs in the epididymal white adipose tissue (eWAT) of mice fed a normal diet (ND) and those fed a high-fat diet (HFD). The expression of miR-6402 was significantly suppressed in the inflamed eWAT of HFD-fed mice than in ND-fed mice. Furthermore, <i>Bmpr2</i>, the receptor for BMP4, was identified as a target gene of miR-6402. Consistently, miR-6402 was downregulated in the inflamed eWAT of HFD-fed mice and in 3T3-L1 cells (preadipocytes) and differentiated 3T3-L1 cells (mature adipocytes) , and BMPR2 expression in these cells was upregulated. Adipogenesis was induced in WAT by BMP4 injection (<i>in vivo</i>) and in 3T3-L1 cells by BMP4 stimulation (<i>in vitro</i>), both of which were inhibited by miR-6402 transfection. Inflamed eWAT showed higher expression of BMPR2 and the adipogenesis markers C/EBPβ and PPARγ, which was suppressed by miR-6402 transfection. Our findings suggest that miR-6402 is a novel anti-adipogenic miRNA that combats obesity by inhibiting the BMP4/BMPR2 signalling pathway and subsequently reducing adipose tissue expansion.</p>","PeriodicalId":7226,"journal":{"name":"Adipocyte","volume":"14 1","pages":"2474114"},"PeriodicalIF":3.5,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11881869/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143539782","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
AdipocytePub Date : 2025-12-01Epub Date: 2025-07-28DOI: 10.1080/21623945.2025.2528437
Alan Ramalho, Marie-Frédérique Gauthier, Ina Maltais-Payette, Giada Ostinelli, Frédéric Hould, Laurent Biertho, André Tchernof
{"title":"High-throughput measurement of adipocyte size with open-source software using whole-slide adipose tissue images.","authors":"Alan Ramalho, Marie-Frédérique Gauthier, Ina Maltais-Payette, Giada Ostinelli, Frédéric Hould, Laurent Biertho, André Tchernof","doi":"10.1080/21623945.2025.2528437","DOIUrl":"10.1080/21623945.2025.2528437","url":null,"abstract":"<p><p>The aim of this study was to create and validate a high-throughput method based on open-source software for the measurement of adipocyte diameters in white adipose tissue histological sections. Human omental and subcutaneous adipose tissue samples collected during bariatric surgery were used to prepare haematoxylin and eosin-stained histological slides. Adipocyte diameters were measured both manually and with an automated procedure created using ImageJ. Comparative analysis of our automated method with the manual measurement and associations of the mean adipocyte diameters with cardiometabolic markers were used to validate our method. A total of 377 adipose samples (190 participants) were included in the analysis. Pearson correlation of mean adipocyte diameters showed a strong linear relationship between methods (<i>r</i> = 0.87, <i>p</i> < 0.0001). Omental adipocyte diameters of both methods were significantly associated with the same markers of cardiometabolic risk (fasting concentrations of TG, HDL-Chol, homoeostasis model assessment of insulin resistance, and visceral adiposity index values) with no significant differences between methods. There were also no significant differences between the manual and automated method regarding the correlations between mean subcutaneous adipocyte diameters and anthropometric or metabolic markers. In conclusion, we have created and validated a rapid automated method to measure adipocyte diameters from whole-slide adipose tissue images.</p>","PeriodicalId":7226,"journal":{"name":"Adipocyte","volume":"14 1","pages":"2528437"},"PeriodicalIF":3.1,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12309532/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144726360","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Correlation analysis of key genes and immune infiltration in visceral adipose tissue and subcutaneous adipose tissue of patients with type 2 diabetes in women.","authors":"Qian Shi, Yongxin Li, Chunyan Liu, Mengjie Liang, Hefei Zha, Xin Zhang, Fuchun Zhang","doi":"10.1080/21623945.2024.2442419","DOIUrl":"https://doi.org/10.1080/21623945.2024.2442419","url":null,"abstract":"<p><p>Immune cell infiltration into adipose tissue (AT) is a key factor in type 2 diabetes (T2DM). However, research on the impact of fat distribution on immune cells and immune responses in women is still lacking. This study used enrichment, protein-protein interaction network, immune cell infiltration, and correlation analysis to compare the similarities and differences between the transcriptome data of visceral AT (VAT) and subcutprotein-proteinaneous AT (SAT) obtained from the omprehensive database of gene expression in women with non-T2DM and T2DM. DEGs with the same biological function in two types of ATs often exhibited different expression trends. SharedVAT-specific and SAT-specific hub genes were mainly associated with transcription factors, monocyte-macrophage markers, and chemokines, respectively. Immune cells affected by both AT types included monocytes, granulocytes, T and B lymphocytes, and NK cells. VAT affected more immune cells, mainly myeloid cells. Shared hub genes in VAT correlated positively with M1 macrophages, suggesting pro-inflammatory effects, while those in SAT correlated negatively with M1 macrophages and lymphocytes, suggesting anti-inflammatory effects. This study provides a theoretical basis for further understanding the correlation between AT and T2DM in women.</p>","PeriodicalId":7226,"journal":{"name":"Adipocyte","volume":"14 1","pages":"2442419"},"PeriodicalIF":3.5,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142881051","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Anti-obese potentiality of marine Topse (<i>Polynemus paradiseus</i>) fish oil by inhibiting the expression of SREBP-1c & promoting β-oxidation of fat through upregulating PPAR-α.","authors":"Riya Kar, Pipika Das, Titli Panchali, Ananya Dutta, Manisha Phoujdar, Kuntal Ghosh, Shrabani Pradhan","doi":"10.1080/21623945.2025.2524640","DOIUrl":"10.1080/21623945.2025.2524640","url":null,"abstract":"<p><p>Considering the adverse effects of marketed drugs, we isolated and analysed topse fish oil (FO) in this study for the first time and examined its effect on obesity. Topse, scientifically known as <i>Polynemus paradiseus</i>, is a common fish species found in the maritime environment of the West Bengal region. To explore the role of marine P. paradiseus FO in alleviating obesity-related metabolic disorders in vivo model. Twenty-four male BALB/c mice with a standard body weight of 18.2 ± 2.1 g were taken and randomly divided into four groups: control group (C), normal chow feeding; obese control (OC), high fat diet (HFD) feeding; Treatment I (T-I) and Treatment II (T-II) group received 200 mg and 400 mg crude oil/kg body weight/day by gavage along with HFD. Here, we examined the effects of P. paradiseus oil on white adipose tissue (WAT) weight, lipid profiles, blood glucose, and adipokine expression levels in the OC group compared to the treated groups to evaluate the anti-obesity effects of FO. Compared to the HFD-induced OC group, the treated obese mice group (T-I and T-II) showed a significant reduction in body weight, Body Mass Index (BMI), and serum lipid profiles following the application of FO. The FO-treated HFD-induced obese mice group showed a moderate reduction in obesity and inflammatory-related adipocytokines compared to the OC group. Topse FO was enhanced with a large amount of essential fatty acids (FAs) and it might be administered as a dietary supplement to prevent obesity.</p>","PeriodicalId":7226,"journal":{"name":"Adipocyte","volume":"14 1","pages":"2524640"},"PeriodicalIF":3.5,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12218541/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144525975","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Atoh8 expression inhibition promoted osteogenic differentiation of ADSCs and inhibited cell proliferation in vitro and rat bone defect models.","authors":"Zian Yi, Shuang Song, Yuxin Bai, Guanhua Zhang, Yuxi Wang, Zijun Chen, Xuefeng Chen, Banglian Deng, Xiangdong Liu, Zuolin Jin","doi":"10.1080/21623945.2025.2494089","DOIUrl":"10.1080/21623945.2025.2494089","url":null,"abstract":"<p><p>Stem cell-based bone tissue engineering offers a promising approach for treating oral and cranio-maxillofacial bone defects. This study investigated the role of Atoh8, a key regulator in various cells, in the osteogenic potential of adipose-derived stem cells (ADSCs). ADSCs transfected with small interfering RNA (siRNA) targeting Atoh8 were evaluated for proliferation, migration, adhesion, and osteogenic capacity. In vivo, 20 SD rats were used to assess bone regeneration using Atoh8-knockdown ADSC sheets, with new bone formation quantified via micro-CT and histological analysis. Atoh8 knockdown in vitro reduced ADSC proliferation and migration but enhanced osteogenic differentiation and upregulation of osteogenic-related factors. This approach improved bone healing in rat defect models, accelerating repair both in vitro and in vivo. The findings underscore the clinical potential of ADSCs in bone tissue engineering and elucidate Atoh8's regulatory role in ADSC osteogenesis, providing a novel therapeutic strategy for enhancing bone regeneration through targeted modulation of stem cell differentiation pathways.</p>","PeriodicalId":7226,"journal":{"name":"Adipocyte","volume":"14 1","pages":"2494089"},"PeriodicalIF":3.5,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12077435/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143961412","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
AdipocytePub Date : 2025-12-01Epub Date: 2025-10-01DOI: 10.1080/21623945.2025.2566481
Khadijeh Abbasi, Amir Mehdizadeh, Hamed Hamishehkar, Mohammad Nouri, Masoud Darabi
{"title":"Fatty acid composition of lipid fractions in white- and brown-like adipocytes derived from human mesenchymal stem cells.","authors":"Khadijeh Abbasi, Amir Mehdizadeh, Hamed Hamishehkar, Mohammad Nouri, Masoud Darabi","doi":"10.1080/21623945.2025.2566481","DOIUrl":"10.1080/21623945.2025.2566481","url":null,"abstract":"<p><p>White and brown adipocytes differ markedly in lipid composition and metabolic function. White adipocytes primarily serve as energy storage depots, whereas brown adipocytes are mitochondria-rich and specialized for thermogenesis. However, the lipidomic profiles of white-like (WLAs) and brown-like adipocytes (BLAs) differentiated from human mesenchymal stem cells (MSCs) remain incompletely characterized. Human adipose-derived MSCs were differentiated into WLAs and BLAs. Lipid fractions were isolated and analysed by gas-liquid chromatography. Fatty acid composition data were used to calculate indices of stearoyl-CoA desaturase-1 (SCD1) activity, elongation, and ω6 synthesis. Compared to MSCs, BLAs showed consistently elevated oleate (≥4.2-fold) and stearate (≥2.3-fold), along with reduced palmitate (≤-20%) and linoleate (≤-28%) across phospholipid, triglyceride, and free fatty acid fractions. WLAs versus MSCs showed similar trends, with oleate increasing up to 15-fold and palmitate decreasing by 67-82% depending on the lipid class. SCD1 activity and elongation indices were elevated in WLAs (SCD1: up to 4.7-fold; elongation: up to 28-fold). The ω6 synthesis index was also increased in triglyceride and free fatty acid fractions of WLAs (≥3.3-fold), but markedly suppressed in BLAs (≤-88.7%). WLAs and BLAs differentiated from MSCs exhibit distinct lipid profiles and inferred enzymatic activity patterns, reflecting their respective capacities for lipid storage and metabolic flexibility. These findings provide a foundation for future translational research aimed at targeting adipose tissue in obesity and metabolic diseases.</p>","PeriodicalId":7226,"journal":{"name":"Adipocyte","volume":"14 1","pages":"2566481"},"PeriodicalIF":3.1,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12498536/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145205347","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
AdipocytePub Date : 2025-12-01Epub Date: 2025-04-03DOI: 10.1080/21623945.2025.2485927
Dan Gao, Chen Bing, Helen R Griffiths
{"title":"Disrupted adipokine secretion and inflammatory responses in human adipocyte hypertrophy.","authors":"Dan Gao, Chen Bing, Helen R Griffiths","doi":"10.1080/21623945.2025.2485927","DOIUrl":"10.1080/21623945.2025.2485927","url":null,"abstract":"<p><p>Adipocyte hypertrophy is a critical contributor to obesity-induced inflammation and insulin resistance. This study employed a human adipocyte hypertrophy model to investigate the adipokine release, inflammatory responses, and the intracellular singling pathways. Hypertrophic adipocytes exhibited increased lipid content and lipolysis, a decline of anti-inflammatory adipokine adiponectin release and an increase of pro-inflammatory adipokine leptin release compared to mature adipocytes. Moreover, TNFα and LPS exacerbated the decrease in adiponectin secretion by hypertrophic adipocytes while promoting the secretion of leptin, MCP-1 and IL-6, which is associated with impaired activation of p38 and JNK MAPK and persistent activation of ERK and IκBα in hypertrophic adipocytes. These altered adipokine secretions and inflammatory responses within hypertrophic adipocytes may contribute to adipocyte dysfunction in human obesity.</p>","PeriodicalId":7226,"journal":{"name":"Adipocyte","volume":"14 1","pages":"2485927"},"PeriodicalIF":3.5,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11980453/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143771183","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
AdipocytePub Date : 2025-12-01Epub Date: 2025-08-04DOI: 10.1080/21623945.2025.2536813
Andrew E Libby, Timothy M Sullivan, Joanne K Maltzahn, Matthew R Jackman, Kathleen M Gavin, Paul S MacLean, Wendy M Kohrt, Susan M Majka, Dwight J Klemm
{"title":"Hematopoietic stem cell-derived adipocytes suppress leptin production, and attenuate ovariectomy-induced inhibition of physical activity and insulin sensitivity in female mice.","authors":"Andrew E Libby, Timothy M Sullivan, Joanne K Maltzahn, Matthew R Jackman, Kathleen M Gavin, Paul S MacLean, Wendy M Kohrt, Susan M Majka, Dwight J Klemm","doi":"10.1080/21623945.2025.2536813","DOIUrl":"10.1080/21623945.2025.2536813","url":null,"abstract":"<p><p>A subpopulation of adipocytes in mice and humans is produced from haematopoietic stem cells rather than mesenchymal progenitors; the source of conventional white and brown/beige adipocytes. The abundance of these haematopoietic stem cell-derived adipocytes (HSCDAs) is elevated in female mice by ovariectomy (OVX) or oestrogen receptor alpha (ERα) knockdown, suggesting that they may be involved in the metabolic and inflammatory pathology that accompany the loss of oestrogen signalling. However, we previously demonstrated that ablation of HSCDAs elevated circulating leptin levels while suppressing physical activity and insulin sensitivity. Here, we tested the combined impact of OVX with and without HSCDA ablation. We discovered that HSCDA depletion plus OVX raised circulating leptin levels more than HSCDA depletion alone. Likewise, while HSCDA depletion or OVX alone inhibited physical activity and insulin responsiveness, their combination further suppressed these endpoints. Other physiologic endpoints were regulated by OVX alone. We conclude that HSCDAs play a role inthe maintenance of a subset of metabolic endpoints related to normal adipose tissue function, and their elevated production in models of female sex hormone suppression occurs to normalize these endpoints. The results highlight the ability of HSCDAs to target physical activity and insulin responsiveness, possibly by normalizing leptin production.</p>","PeriodicalId":7226,"journal":{"name":"Adipocyte","volume":"14 1","pages":"2536813"},"PeriodicalIF":3.1,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12323437/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144783225","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
AdipocytePub Date : 2025-12-01Epub Date: 2025-03-19DOI: 10.1080/21623945.2025.2473367
Victoria L Workman, Anna-Victoria Giblin, Nicola H Green, Sheila MacNeil, Vanessa Hearnden
{"title":"Adipose tissue and adipose-derived stromal cells can reduce skin contraction in an <i>in vitro</i> tissue engineered full thickness skin model.","authors":"Victoria L Workman, Anna-Victoria Giblin, Nicola H Green, Sheila MacNeil, Vanessa Hearnden","doi":"10.1080/21623945.2025.2473367","DOIUrl":"10.1080/21623945.2025.2473367","url":null,"abstract":"<p><p>Skin contracts during wound healing to facilitate wound closure. In some patients, skin contraction can lead to the formation of skin contractures that limit movement, impair function, and significantly impact well-being. Current treatment options for skin contractures are burdensome for patients, and there is a high risk of recurrence. Autologous fat grafting can improve the structure and function of scarred skin; however, relatively little is known about the effect of fat on skin contraction. In this study, an in vitro tissue-engineered model of human skin was used to test the effects of adipose tissue and adipose-derived stromal cells on skin contraction. Untreated tissue-engineered skin contracted to approximately 60% of the original area over 14 days in culture. The addition of adipose tissue reduced this contraction by 50%. Adipose tissue, which was emulsified or concentrated and high doses of adipose-derived stromal cells (ADSC) were able to inhibit contraction to a similar degree; however, lower doses of ADSC did not show the same effect. In conclusion, the subcutaneous application of adipose tissue has the potential to inhibit skin contraction. This study provides in vitro evidence to support the use of autologous fat grafting to prevent skin contraction in patients most at risk.</p>","PeriodicalId":7226,"journal":{"name":"Adipocyte","volume":"14 1","pages":"2473367"},"PeriodicalIF":3.5,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143655606","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}