在体外组织工程全层皮肤模型中,脂肪组织和脂肪来源的基质细胞可以减少皮肤收缩。

IF 3.5 4区 生物学 Q2 ENDOCRINOLOGY & METABOLISM
Adipocyte Pub Date : 2025-12-01 Epub Date: 2025-03-19 DOI:10.1080/21623945.2025.2473367
Victoria L Workman, Anna-Victoria Giblin, Nicola H Green, Sheila MacNeil, Vanessa Hearnden
{"title":"在体外组织工程全层皮肤模型中,脂肪组织和脂肪来源的基质细胞可以减少皮肤收缩。","authors":"Victoria L Workman, Anna-Victoria Giblin, Nicola H Green, Sheila MacNeil, Vanessa Hearnden","doi":"10.1080/21623945.2025.2473367","DOIUrl":null,"url":null,"abstract":"<p><p>Skin contracts during wound healing to facilitate wound closure. In some patients, skin contraction can lead to the formation of skin contractures that limit movement, impair function, and significantly impact well-being. Current treatment options for skin contractures are burdensome for patients, and there is a high risk of recurrence. Autologous fat grafting can improve the structure and function of scarred skin; however, relatively little is known about the effect of fat on skin contraction. In this study, an in vitro tissue-engineered model of human skin was used to test the effects of adipose tissue and adipose-derived stromal cells on skin contraction. Untreated tissue-engineered skin contracted to approximately 60% of the original area over 14 days in culture. The addition of adipose tissue reduced this contraction by 50%. Adipose tissue, which was emulsified or concentrated and high doses of adipose-derived stromal cells (ADSC) were able to inhibit contraction to a similar degree; however, lower doses of ADSC did not show the same effect. In conclusion, the subcutaneous application of adipose tissue has the potential to inhibit skin contraction. This study provides in vitro evidence to support the use of autologous fat grafting to prevent skin contraction in patients most at risk.</p>","PeriodicalId":7226,"journal":{"name":"Adipocyte","volume":"14 1","pages":"2473367"},"PeriodicalIF":3.5000,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Adipose tissue and adipose-derived stromal cells can reduce skin contraction in an <i>in vitro</i> tissue engineered full thickness skin model.\",\"authors\":\"Victoria L Workman, Anna-Victoria Giblin, Nicola H Green, Sheila MacNeil, Vanessa Hearnden\",\"doi\":\"10.1080/21623945.2025.2473367\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Skin contracts during wound healing to facilitate wound closure. In some patients, skin contraction can lead to the formation of skin contractures that limit movement, impair function, and significantly impact well-being. Current treatment options for skin contractures are burdensome for patients, and there is a high risk of recurrence. Autologous fat grafting can improve the structure and function of scarred skin; however, relatively little is known about the effect of fat on skin contraction. In this study, an in vitro tissue-engineered model of human skin was used to test the effects of adipose tissue and adipose-derived stromal cells on skin contraction. Untreated tissue-engineered skin contracted to approximately 60% of the original area over 14 days in culture. The addition of adipose tissue reduced this contraction by 50%. Adipose tissue, which was emulsified or concentrated and high doses of adipose-derived stromal cells (ADSC) were able to inhibit contraction to a similar degree; however, lower doses of ADSC did not show the same effect. In conclusion, the subcutaneous application of adipose tissue has the potential to inhibit skin contraction. This study provides in vitro evidence to support the use of autologous fat grafting to prevent skin contraction in patients most at risk.</p>\",\"PeriodicalId\":7226,\"journal\":{\"name\":\"Adipocyte\",\"volume\":\"14 1\",\"pages\":\"2473367\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Adipocyte\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1080/21623945.2025.2473367\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/3/19 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"ENDOCRINOLOGY & METABOLISM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Adipocyte","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/21623945.2025.2473367","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/19 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0

摘要

在伤口愈合过程中,皮肤收缩以促进伤口愈合。在一些患者中,皮肤收缩可导致皮肤收缩的形成,从而限制运动,损害功能,并严重影响健康。目前皮肤挛缩的治疗方案对患者来说是沉重的负担,并且有很高的复发风险。自体脂肪移植能改善疤痕皮肤的结构和功能;然而,人们对脂肪对皮肤收缩的影响知之甚少。本研究采用体外组织工程人体皮肤模型,研究脂肪组织和脂肪源性基质细胞对皮肤收缩的影响。未经处理的组织工程皮肤在培养的14天内收缩到原始面积的60%左右。脂肪组织的加入使这种收缩减少了50%。乳化或浓缩的脂肪组织和高剂量的脂肪源性基质细胞(ADSC)能够在相似程度上抑制收缩;然而,低剂量的ADSC没有显示出同样的效果。总之,脂肪组织的皮下应用具有抑制皮肤收缩的潜力。该研究提供了体外证据,支持在高危患者中使用自体脂肪移植来预防皮肤收缩。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Adipose tissue and adipose-derived stromal cells can reduce skin contraction in an in vitro tissue engineered full thickness skin model.

Skin contracts during wound healing to facilitate wound closure. In some patients, skin contraction can lead to the formation of skin contractures that limit movement, impair function, and significantly impact well-being. Current treatment options for skin contractures are burdensome for patients, and there is a high risk of recurrence. Autologous fat grafting can improve the structure and function of scarred skin; however, relatively little is known about the effect of fat on skin contraction. In this study, an in vitro tissue-engineered model of human skin was used to test the effects of adipose tissue and adipose-derived stromal cells on skin contraction. Untreated tissue-engineered skin contracted to approximately 60% of the original area over 14 days in culture. The addition of adipose tissue reduced this contraction by 50%. Adipose tissue, which was emulsified or concentrated and high doses of adipose-derived stromal cells (ADSC) were able to inhibit contraction to a similar degree; however, lower doses of ADSC did not show the same effect. In conclusion, the subcutaneous application of adipose tissue has the potential to inhibit skin contraction. This study provides in vitro evidence to support the use of autologous fat grafting to prevent skin contraction in patients most at risk.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Adipocyte
Adipocyte Medicine-Histology
CiteScore
6.50
自引率
3.00%
发文量
46
审稿时长
32 weeks
期刊介绍: Adipocyte recognizes that the adipose tissue is the largest endocrine organ in the body, and explores the link between dysfunctional adipose tissue and the growing number of chronic diseases including diabetes, hypertension, cardiovascular disease and cancer. Historically, the primary function of the adipose tissue was limited to energy storage and thermoregulation. However, a plethora of research over the past 3 decades has recognized the dynamic role of the adipose tissue and its contribution to a variety of physiological processes including reproduction, angiogenesis, apoptosis, inflammation, blood pressure, coagulation, fibrinolysis, immunity and general metabolic homeostasis. The field of Adipose Tissue research has grown tremendously, and Adipocyte is the first international peer-reviewed journal of its kind providing a multi-disciplinary forum for research focusing exclusively on all aspects of adipose tissue physiology and pathophysiology. Adipocyte accepts high-profile submissions in basic, translational and clinical research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信