Atoh8 expression inhibition promoted osteogenic differentiation of ADSCs and inhibited cell proliferation in vitro and rat bone defect models.

IF 3.5 4区 生物学 Q2 ENDOCRINOLOGY & METABOLISM
Adipocyte Pub Date : 2025-12-01 Epub Date: 2025-05-12 DOI:10.1080/21623945.2025.2494089
Zian Yi, Shuang Song, Yuxin Bai, Guanhua Zhang, Yuxi Wang, Zijun Chen, Xuefeng Chen, Banglian Deng, Xiangdong Liu, Zuolin Jin
{"title":"Atoh8 expression inhibition promoted osteogenic differentiation of ADSCs and inhibited cell proliferation in vitro and rat bone defect models.","authors":"Zian Yi, Shuang Song, Yuxin Bai, Guanhua Zhang, Yuxi Wang, Zijun Chen, Xuefeng Chen, Banglian Deng, Xiangdong Liu, Zuolin Jin","doi":"10.1080/21623945.2025.2494089","DOIUrl":null,"url":null,"abstract":"<p><p>Stem cell-based bone tissue engineering offers a promising approach for treating oral and cranio-maxillofacial bone defects. This study investigated the role of Atoh8, a key regulator in various cells, in the osteogenic potential of adipose-derived stem cells (ADSCs). ADSCs transfected with small interfering RNA (siRNA) targeting Atoh8 were evaluated for proliferation, migration, adhesion, and osteogenic capacity. In vivo, 20 SD rats were used to assess bone regeneration using Atoh8-knockdown ADSC sheets, with new bone formation quantified via micro-CT and histological analysis. Atoh8 knockdown in vitro reduced ADSC proliferation and migration but enhanced osteogenic differentiation and upregulation of osteogenic-related factors. This approach improved bone healing in rat defect models, accelerating repair both in vitro and in vivo. The findings underscore the clinical potential of ADSCs in bone tissue engineering and elucidate Atoh8's regulatory role in ADSC osteogenesis, providing a novel therapeutic strategy for enhancing bone regeneration through targeted modulation of stem cell differentiation pathways.</p>","PeriodicalId":7226,"journal":{"name":"Adipocyte","volume":"14 1","pages":"2494089"},"PeriodicalIF":3.5000,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12077435/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Adipocyte","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/21623945.2025.2494089","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/5/12 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0

Abstract

Stem cell-based bone tissue engineering offers a promising approach for treating oral and cranio-maxillofacial bone defects. This study investigated the role of Atoh8, a key regulator in various cells, in the osteogenic potential of adipose-derived stem cells (ADSCs). ADSCs transfected with small interfering RNA (siRNA) targeting Atoh8 were evaluated for proliferation, migration, adhesion, and osteogenic capacity. In vivo, 20 SD rats were used to assess bone regeneration using Atoh8-knockdown ADSC sheets, with new bone formation quantified via micro-CT and histological analysis. Atoh8 knockdown in vitro reduced ADSC proliferation and migration but enhanced osteogenic differentiation and upregulation of osteogenic-related factors. This approach improved bone healing in rat defect models, accelerating repair both in vitro and in vivo. The findings underscore the clinical potential of ADSCs in bone tissue engineering and elucidate Atoh8's regulatory role in ADSC osteogenesis, providing a novel therapeutic strategy for enhancing bone regeneration through targeted modulation of stem cell differentiation pathways.

Atoh8表达抑制促进ADSCs成骨分化,抑制体外及大鼠骨缺损模型细胞增殖。
基于干细胞的骨组织工程为治疗口腔和颅颌面骨缺损提供了一种很有前景的方法。本研究探讨了Atoh8在脂肪源性干细胞(ADSCs)成骨潜能中的作用,Atoh8是多种细胞中的关键调节因子。用靶向Atoh8的小干扰RNA (siRNA)转染ADSCs,评估其增殖、迁移、粘附和成骨能力。在体内,20只SD大鼠使用atoh8敲除的ADSC片评估骨再生,并通过显微ct和组织学分析量化新骨形成。体外敲低Atoh8可减少ADSC的增殖和迁移,但可增强成骨分化和上调成骨相关因子。这种方法改善了大鼠骨缺损模型的愈合,加速了体外和体内的修复。这些发现强调了ADSC在骨组织工程中的临床潜力,并阐明了Atoh8在ADSC成骨中的调节作用,为通过靶向调节干细胞分化途径促进骨再生提供了一种新的治疗策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Adipocyte
Adipocyte Medicine-Histology
CiteScore
6.50
自引率
3.00%
发文量
46
审稿时长
32 weeks
期刊介绍: Adipocyte recognizes that the adipose tissue is the largest endocrine organ in the body, and explores the link between dysfunctional adipose tissue and the growing number of chronic diseases including diabetes, hypertension, cardiovascular disease and cancer. Historically, the primary function of the adipose tissue was limited to energy storage and thermoregulation. However, a plethora of research over the past 3 decades has recognized the dynamic role of the adipose tissue and its contribution to a variety of physiological processes including reproduction, angiogenesis, apoptosis, inflammation, blood pressure, coagulation, fibrinolysis, immunity and general metabolic homeostasis. The field of Adipose Tissue research has grown tremendously, and Adipocyte is the first international peer-reviewed journal of its kind providing a multi-disciplinary forum for research focusing exclusively on all aspects of adipose tissue physiology and pathophysiology. Adipocyte accepts high-profile submissions in basic, translational and clinical research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信