Hematopoietic stem cell-derived adipocytes suppress leptin production, and attenuate ovariectomy-induced inhibition of physical activity and insulin sensitivity in female mice.
Andrew E Libby, Timothy M Sullivan, Joanne K Maltzahn, Matthew R Jackman, Kathleen M Gavin, Paul S MacLean, Wendy M Kohrt, Susan M Majka, Dwight J Klemm
{"title":"Hematopoietic stem cell-derived adipocytes suppress leptin production, and attenuate ovariectomy-induced inhibition of physical activity and insulin sensitivity in female mice.","authors":"Andrew E Libby, Timothy M Sullivan, Joanne K Maltzahn, Matthew R Jackman, Kathleen M Gavin, Paul S MacLean, Wendy M Kohrt, Susan M Majka, Dwight J Klemm","doi":"10.1080/21623945.2025.2536813","DOIUrl":null,"url":null,"abstract":"<p><p>A subpopulation of adipocytes in mice and humans is produced from haematopoietic stem cells rather than mesenchymal progenitors; the source of conventional white and brown/beige adipocytes. The abundance of these haematopoietic stem cell-derived adipocytes (HSCDAs) is elevated in female mice by ovariectomy (OVX) or oestrogen receptor alpha (ERα) knockdown, suggesting that they may be involved in the metabolic and inflammatory pathology that accompany the loss of oestrogen signalling. However, we previously demonstrated that ablation of HSCDAs elevated circulating leptin levels while suppressing physical activity and insulin sensitivity. Here, we tested the combined impact of OVX with and without HSCDA ablation. We discovered that HSCDA depletion plus OVX raised circulating leptin levels more than HSCDA depletion alone. Likewise, while HSCDA depletion or OVX alone inhibited physical activity and insulin responsiveness, their combination further suppressed these endpoints. Other physiologic endpoints were regulated by OVX alone. We conclude that HSCDAs play a role inthe maintenance of a subset of metabolic endpoints related to normal adipose tissue function, and their elevated production in models of female sex hormone suppression occurs to normalize these endpoints. The results highlight the ability of HSCDAs to target physical activity and insulin responsiveness, possibly by normalizing leptin production.</p>","PeriodicalId":7226,"journal":{"name":"Adipocyte","volume":"14 1","pages":"2536813"},"PeriodicalIF":3.1000,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12323437/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Adipocyte","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/21623945.2025.2536813","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/8/4 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0
Abstract
A subpopulation of adipocytes in mice and humans is produced from haematopoietic stem cells rather than mesenchymal progenitors; the source of conventional white and brown/beige adipocytes. The abundance of these haematopoietic stem cell-derived adipocytes (HSCDAs) is elevated in female mice by ovariectomy (OVX) or oestrogen receptor alpha (ERα) knockdown, suggesting that they may be involved in the metabolic and inflammatory pathology that accompany the loss of oestrogen signalling. However, we previously demonstrated that ablation of HSCDAs elevated circulating leptin levels while suppressing physical activity and insulin sensitivity. Here, we tested the combined impact of OVX with and without HSCDA ablation. We discovered that HSCDA depletion plus OVX raised circulating leptin levels more than HSCDA depletion alone. Likewise, while HSCDA depletion or OVX alone inhibited physical activity and insulin responsiveness, their combination further suppressed these endpoints. Other physiologic endpoints were regulated by OVX alone. We conclude that HSCDAs play a role inthe maintenance of a subset of metabolic endpoints related to normal adipose tissue function, and their elevated production in models of female sex hormone suppression occurs to normalize these endpoints. The results highlight the ability of HSCDAs to target physical activity and insulin responsiveness, possibly by normalizing leptin production.
期刊介绍:
Adipocyte recognizes that the adipose tissue is the largest endocrine organ in the body, and explores the link between dysfunctional adipose tissue and the growing number of chronic diseases including diabetes, hypertension, cardiovascular disease and cancer. Historically, the primary function of the adipose tissue was limited to energy storage and thermoregulation. However, a plethora of research over the past 3 decades has recognized the dynamic role of the adipose tissue and its contribution to a variety of physiological processes including reproduction, angiogenesis, apoptosis, inflammation, blood pressure, coagulation, fibrinolysis, immunity and general metabolic homeostasis. The field of Adipose Tissue research has grown tremendously, and Adipocyte is the first international peer-reviewed journal of its kind providing a multi-disciplinary forum for research focusing exclusively on all aspects of adipose tissue physiology and pathophysiology. Adipocyte accepts high-profile submissions in basic, translational and clinical research.