Plasminogen-derived peptide promotes adipogenic differentiation of preadipocytes in vitro and in vivo.

IF 3.5 4区 生物学 Q2 ENDOCRINOLOGY & METABOLISM
Hea Jung Yang, Jong-Ho Kim, Jung Hee Shim, Chan Yeong Heo
{"title":"Plasminogen-derived peptide promotes adipogenic differentiation of preadipocytes <i>in vitro</i> and <i>in vivo</i>.","authors":"Hea Jung Yang,&nbsp;Jong-Ho Kim,&nbsp;Jung Hee Shim,&nbsp;Chan Yeong Heo","doi":"10.1080/21623945.2022.2149121","DOIUrl":null,"url":null,"abstract":"<p><p>Soft tissue defects caused by adipose tissue loss can result in various conditions such as lipodystrophy in congenital diseases, trauma secondary to ageing, and mastectomy in breast cancer; fat grafting is commonly performed to restore these defects. Although various enrichment strategies have been studied, novel therapeutics that are cost-effective, safe, technologically easy to manufacture, and minimally invasive are required. In this study, we identified a novel peptide derived from plasminogen, named plasminogen-derived peptide-1 (PLP-1), which showed adipogenic differentiation potential and led to an increase in the expression levels of adiponectin, C1Q and collagen domain containing protein, fatty acid-binding protein 4, and CCAAT/enhancer-binding protein-alpha. <i>In vivo</i> experiments confirmed an increase in the rate of adipocyte differentiation and the expression levels of CD31 in the PLP-1-treated mice groups. These results suggested that PLP-1 plays an important role in promoting the differentiation of preadipocytes and may be useful for developing therapeutic approaches to treat adipose tissue defects.</p>","PeriodicalId":7226,"journal":{"name":"Adipocyte","volume":"11 1","pages":"643-652"},"PeriodicalIF":3.5000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/0a/d2/KADI_11_2149121.PMC9718552.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Adipocyte","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/21623945.2022.2149121","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0

Abstract

Soft tissue defects caused by adipose tissue loss can result in various conditions such as lipodystrophy in congenital diseases, trauma secondary to ageing, and mastectomy in breast cancer; fat grafting is commonly performed to restore these defects. Although various enrichment strategies have been studied, novel therapeutics that are cost-effective, safe, technologically easy to manufacture, and minimally invasive are required. In this study, we identified a novel peptide derived from plasminogen, named plasminogen-derived peptide-1 (PLP-1), which showed adipogenic differentiation potential and led to an increase in the expression levels of adiponectin, C1Q and collagen domain containing protein, fatty acid-binding protein 4, and CCAAT/enhancer-binding protein-alpha. In vivo experiments confirmed an increase in the rate of adipocyte differentiation and the expression levels of CD31 in the PLP-1-treated mice groups. These results suggested that PLP-1 plays an important role in promoting the differentiation of preadipocytes and may be useful for developing therapeutic approaches to treat adipose tissue defects.

纤溶酶原衍生肽促进体内外前脂肪细胞的成脂分化。
由脂肪组织损失引起的软组织缺损可导致各种情况,如先天性疾病中的脂肪营养不良、衰老引起的创伤和乳腺癌中的乳房切除术;脂肪移植通常用于修复这些缺陷。虽然已经研究了各种富集策略,但需要具有成本效益,安全,技术上易于制造且微创的新型治疗方法。在本研究中,我们鉴定了一种来自纤溶酶原的新型肽,命名为纤溶酶原衍生肽-1 (PLP-1),该肽具有成脂分化潜力,并导致脂联素、C1Q和胶原结构域蛋白、脂肪酸结合蛋白4和CCAAT/增强子结合蛋白α的表达水平升高。体内实验证实,在plp -1处理的小鼠组中,脂肪细胞分化率和CD31表达水平增加。这些结果表明,PLP-1在促进前脂肪细胞分化中起重要作用,可能有助于开发治疗脂肪组织缺陷的治疗方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Adipocyte
Adipocyte Medicine-Histology
CiteScore
6.50
自引率
3.00%
发文量
46
审稿时长
32 weeks
期刊介绍: Adipocyte recognizes that the adipose tissue is the largest endocrine organ in the body, and explores the link between dysfunctional adipose tissue and the growing number of chronic diseases including diabetes, hypertension, cardiovascular disease and cancer. Historically, the primary function of the adipose tissue was limited to energy storage and thermoregulation. However, a plethora of research over the past 3 decades has recognized the dynamic role of the adipose tissue and its contribution to a variety of physiological processes including reproduction, angiogenesis, apoptosis, inflammation, blood pressure, coagulation, fibrinolysis, immunity and general metabolic homeostasis. The field of Adipose Tissue research has grown tremendously, and Adipocyte is the first international peer-reviewed journal of its kind providing a multi-disciplinary forum for research focusing exclusively on all aspects of adipose tissue physiology and pathophysiology. Adipocyte accepts high-profile submissions in basic, translational and clinical research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信