Nano Convergence最新文献

筛选
英文 中文
Ferroelectric capacitive memories: devices, arrays, and applications 铁电容性存储器:器件、阵列和应用
IF 13.4 2区 材料科学
Nano Convergence Pub Date : 2025-01-22 DOI: 10.1186/s40580-024-00463-0
Zuopu Zhou, Leming Jiao, Zijie Zheng, Yue Chen, Kaizhen Han, Yuye Kang, Dong Zhang, Xiaolin Wang, Qiwen Kong, Chen Sun, Jiawei Xie, Xiao Gong
{"title":"Ferroelectric capacitive memories: devices, arrays, and applications","authors":"Zuopu Zhou,&nbsp;Leming Jiao,&nbsp;Zijie Zheng,&nbsp;Yue Chen,&nbsp;Kaizhen Han,&nbsp;Yuye Kang,&nbsp;Dong Zhang,&nbsp;Xiaolin Wang,&nbsp;Qiwen Kong,&nbsp;Chen Sun,&nbsp;Jiawei Xie,&nbsp;Xiao Gong","doi":"10.1186/s40580-024-00463-0","DOIUrl":"10.1186/s40580-024-00463-0","url":null,"abstract":"<div><p>\u0000 Ferroelectric capacitive memories (FCMs) utilize ferroelectric polarization to modulate device capacitance for data storage, providing a new technological pathway to achieve two-terminal non-destructive-read ferroelectric memory. In contrast to the conventional resistive memories, the unique capacitive operation mechanism of FCMs transfers the memory reading and in-memory computing to charge domain, offering ultra-high energy efficiency, better compatibility to large-scale array, and negligible read disturbance. In recent years, extensive research has been conducted on FCMs. Various device designs were proposed and experimentally demonstrated with progressively enhanced performance, showing remarkable potential of the novel technology. This article summarizes several typical FCM devices by introducing their mechanisms, comparing their performance, and discussing their limitations. We further investigate the capacitive crossbar array operation and review the recent progress in the FCM integration and array-level demonstrations. In addition, we present the computing-in-memory applications of the FCMs to realize ultra-low-power machine learning acceleration for future computing systems.</p></div>","PeriodicalId":712,"journal":{"name":"Nano Convergence","volume":"12 1","pages":""},"PeriodicalIF":13.4,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://nanoconvergencejournal.springeropen.com/counter/pdf/10.1186/s40580-024-00463-0","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142995721","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multi-gate neuron-like transistors based on ensembles of aligned nanowires on flexible substrates 基于柔性衬底上排列纳米线集成的多栅类神经元晶体管
IF 13.4 2区 材料科学
Nano Convergence Pub Date : 2025-01-18 DOI: 10.1186/s40580-024-00472-z
João Neto, Abhishek Singh Dahiya, Ravinder Dahiya
{"title":"Multi-gate neuron-like transistors based on ensembles of aligned nanowires on flexible substrates","authors":"João Neto,&nbsp;Abhishek Singh Dahiya,&nbsp;Ravinder Dahiya","doi":"10.1186/s40580-024-00472-z","DOIUrl":"10.1186/s40580-024-00472-z","url":null,"abstract":"<div><p>The intriguing way the receptors in biological skin encode the tactile data has inspired the development of electronic skins (e-skin) with brain-inspired or neuromorphic computing. Starting with local (near sensor) data processing, there is an inherent mechanism in play that helps to scale down the data. This is particularly attractive when one considers the huge data produced by large number of sensors expected in a large area e-skin such as the whole-body skin of a robot. This underlines the need for biological skin like processing in the e-skin. Herein, we present multi-gate field-effect transistors (<i>v</i>-FET) having capacitively coupled floating gate (FG) to mimic some of the neural functions. The <i>v</i>-FETs are obtained by deterministic assembly of ZnO nanowires on a flexible substrate using contactless dielectrophoresis method, followed metallization using conventional microfabrication steps. The spatial summation of two presynaptic inputs (applied at multiple control gates) of the transistor confirm their neuron-like response. The temporal summation (such as paired-pulse facilitation) by presented <i>v</i>-FETs further confirm their neuron-like mimicking with one presynaptic input. The temporal and spatial summation functions, demonstrated by the <i>v</i>-FET presented here, could open interesting new avenues for development of neuromorphic electronic skin (<i>v</i>-skin) with possibility of biological-skin like distributed computing.</p></div>","PeriodicalId":712,"journal":{"name":"Nano Convergence","volume":"12 1","pages":""},"PeriodicalIF":13.4,"publicationDate":"2025-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://nanoconvergencejournal.springeropen.com/counter/pdf/10.1186/s40580-024-00472-z","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142995416","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Tuning electronic structure and carrier transport properties through crystal orientation control in two-dimensional Dion-Jacobson phase perovskites 通过晶体取向控制二维Dion-Jacobson相钙钛矿的电子结构和载流子输运性质
IF 13.4 2区 材料科学
Nano Convergence Pub Date : 2025-01-13 DOI: 10.1186/s40580-024-00473-y
Byunggeol Kim, Jeehong Park, Donghee Kang, Na Eun Jung, Kitae Kim, Hongsun Ryu, Joon Ik Jang, Soohyung Park, Yeonjin Yi
{"title":"Tuning electronic structure and carrier transport properties through crystal orientation control in two-dimensional Dion-Jacobson phase perovskites","authors":"Byunggeol Kim,&nbsp;Jeehong Park,&nbsp;Donghee Kang,&nbsp;Na Eun Jung,&nbsp;Kitae Kim,&nbsp;Hongsun Ryu,&nbsp;Joon Ik Jang,&nbsp;Soohyung Park,&nbsp;Yeonjin Yi","doi":"10.1186/s40580-024-00473-y","DOIUrl":"10.1186/s40580-024-00473-y","url":null,"abstract":"<div><p>Two-dimensional halide perovskites are attracting attention due to their structural diversity, improved stability, and enhanced quantum efficiency compared to their three-dimensional counterparts. In particular, Dion-Jacobson (DJ) phase perovskites exhibit superior structural stability compared to Ruddlesden-Popper phase perovskites. The inherent quantum well structure of layered perovskites leads to highly anisotropic charge transport and optical properties. Therefore, controlling the preferred crystal orientation (parallel or perpendicular) is crucial for optimizing device performance. This work presents a rational strategy to control parallel and perpendicular crystal growth in C<sub>6</sub>N<sub>2</sub>H<sub>16</sub>PbI<sub>4</sub> (4AMPPbI<sub>4</sub>)-based DJ phase perovskite thin films. We demonstrate that crystal orientation depends on crystal growth rates, which can be controlled by varying the solvent composition, antisolvent, and annealing temperature. Direct and inverse photoelectron spectroscopy reveals that the electronic structure of 4AMPPbI<sub>4</sub>, including its work function, ionization energy, and electron affinity, is orientation-dependent. Different orientations significantly affect carrier transport as confirmed by single-carrier devices. This study highlights the critical role of crystal orientation in DJ phase perovskites for designing high-performance optoelectronic devices.</p><h3>Graphical Abstract</h3>\u0000<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":712,"journal":{"name":"Nano Convergence","volume":"12 1","pages":""},"PeriodicalIF":13.4,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://nanoconvergencejournal.springeropen.com/counter/pdf/10.1186/s40580-024-00473-y","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142976500","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhanced performance of hafnia self-rectifying ferroelectric tunnel junctions at cryogenic temperatures 在低温下增强半铪自整流铁电隧道结的性能。
IF 13.4 2区 材料科学
Nano Convergence Pub Date : 2024-12-16 DOI: 10.1186/s40580-024-00461-2
Junghyeon Hwang, Chaeheon Kim, Jinho Ahn, Sanghun Jeon
{"title":"Enhanced performance of hafnia self-rectifying ferroelectric tunnel junctions at cryogenic temperatures","authors":"Junghyeon Hwang,&nbsp;Chaeheon Kim,&nbsp;Jinho Ahn,&nbsp;Sanghun Jeon","doi":"10.1186/s40580-024-00461-2","DOIUrl":"10.1186/s40580-024-00461-2","url":null,"abstract":"<div><p>The advancement in high-performance computing technologies, including quantum and aerospace systems, necessitates components that operate efficiently at cryogenic temperatures. In this study, we demonstrate a hafnia-based ferroelectric tunnel junction (FTJ) that achieves a record-high tunneling electroresistance (TER) ratio of over 200,000 and decade-long retention characteristics. By introducing asymmetric oxygen vacancies through the strategic use of indium oxide (InO<sub>x</sub>) layer, we enhance the TER ratio without increasing off-current, addressing the longstanding issue of low on-current in hafnia-based FTJs. Unlike prior approaches that led to leakage currents, our method optimizes tunneling behavior by leveraging the differential oxygen dissociation energy between InO<sub>x</sub> and hafnium zirconium oxide (HZO). This results in asymmetric modulation of the tunnel barrier, enhancing electron tunneling in one polarization state while maintaining stability in the opposite state. Furthermore, we explore the intrinsic characteristics of the FTJ at cryogenic temperatures, where reduced thermal energy minimizes leakage currents and allows the maximization of device performance. These findings establish a new benchmark for TER in hafnia-based FTJs and provide valuable insights for the integration of these devices into advanced cryogenic memory systems.</p><h3>Graphical Abstract</h3>\u0000<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":712,"journal":{"name":"Nano Convergence","volume":"11 1","pages":""},"PeriodicalIF":13.4,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://nanoconvergencejournal.springeropen.com/counter/pdf/10.1186/s40580-024-00461-2","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142833387","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Engineering of buried interfaces in perovskites: advancing sustainable photovoltaics 过氧化物中的埋藏界面工程:推动可持续光伏技术的发展。
IF 13.4 2区 材料科学
Nano Convergence Pub Date : 2024-12-16 DOI: 10.1186/s40580-024-00464-z
Jihyun Kim, William Jo
{"title":"Engineering of buried interfaces in perovskites: advancing sustainable photovoltaics","authors":"Jihyun Kim,&nbsp;William Jo","doi":"10.1186/s40580-024-00464-z","DOIUrl":"10.1186/s40580-024-00464-z","url":null,"abstract":"<div><p>Perovskite solar cells (PSCs) have garnered significant attention for their high power conversion efficiency (PCE) and potential for cost-effective, large-scale manufacturing. This comprehensive review focuses on the role of buried interface engineering in enhancing the performance and stability of PSCs with both n-type electron transport layer/perovskite/p-type hole transport layer (n-i-p) and p-type hole transport layer/perovskite/n-type electron transport layer (p-i-n) structures. This study highlights key challenges associated with interface engineering, such as charge extraction, recombination loss, and energy level alignment. Various interface engineering techniques, such as surface passivation, self-assembled monolayers, and additive engineering, are explored in terms of their effectiveness in mitigating recombination loss and improving long-term device stability. This review also provides an in-depth analysis of material selection for the electron and hole transport layers, defect management techniques, and the influence of these on perovskite film quality and device stability. Advanced characterization methods for buried interfaces are discussed, providing insights into the structural, morphological, and electronic properties that govern device performance. Furthermore, we explore emerging approaches that target homogenous cation distribution and phase stability at buried interfaces, both of which are crucial for improving PCEs beyond current benchmarks. By synthesizing the latest research findings and identifying key challenges, this review aims to guide future directions in interface engineering for PSCs and ensure their successful use in next-generation sustainable energy technologies.</p><h3>Graphical Abstract</h3>\u0000<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":712,"journal":{"name":"Nano Convergence","volume":"11 1","pages":""},"PeriodicalIF":13.4,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://nanoconvergencejournal.springeropen.com/counter/pdf/10.1186/s40580-024-00464-z","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142833386","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nanomaterial-based detection of circulating tumor cells and circulating cancer stem cells for cancer immunotherapy 基于纳米材料的循环肿瘤细胞和循环肿瘤干细胞检测用于肿瘤免疫治疗
IF 13.4 2区 材料科学
Nano Convergence Pub Date : 2024-12-13 DOI: 10.1186/s40580-024-00466-x
Yeochan Yun, Seewoo Kim, Sang-Nam Lee, Hyeon-Yeol Cho, Jeong-Woo Choi
{"title":"Nanomaterial-based detection of circulating tumor cells and circulating cancer stem cells for cancer immunotherapy","authors":"Yeochan Yun,&nbsp;Seewoo Kim,&nbsp;Sang-Nam Lee,&nbsp;Hyeon-Yeol Cho,&nbsp;Jeong-Woo Choi","doi":"10.1186/s40580-024-00466-x","DOIUrl":"10.1186/s40580-024-00466-x","url":null,"abstract":"<div><p>Nanomaterials have emerged as transformative tools for detecting circulating tumor cells (CTCs) and circulating cancer stem cells (CCSCs), significantly enhancing cancer diagnostics and immunotherapy. Nanomaterials, including those composed of gold, magnetic materials, and silica, have enhanced the sensitivity, specificity, and efficiency of isolating these rare cells from blood. These developments are of paramount importance for the early detection of cancer and for providing real-time insights into metastasis and treatment resistance, which are essential for the development of personalized immunotherapies. The combination of nanomaterial-based platforms with phenotyping techniques, such as Raman spectroscopy and microfluidics, enables researchers to enhance immunotherapy protocols targeting specific CTC and CCSC markers. Nanomaterials also facilitate the targeted delivery of immunotherapeutic agents, including immune checkpoint inhibitors and therapeutic antibodies, directly to tumor cells. This synergistic approach has the potential to enhance therapeutic efficacy and mitigate the risk of metastasis and relapse. In conclusion, this review critically examines the use of nanomaterial-driven detection systems for detecting CTCs and CCSCs, their application in immunotherapy, and suggests future directions, highlighting their potential to transform the integration of diagnostics and treatment, thereby paving the way for more precise and personalized cancer therapies.</p><h3>Graphical Abstract</h3>\u0000<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":712,"journal":{"name":"Nano Convergence","volume":"11 1","pages":""},"PeriodicalIF":13.4,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://nanoconvergencejournal.springeropen.com/counter/pdf/10.1186/s40580-024-00466-x","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142810922","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Persistent ferromagnetic ground state in pristine and Ni-doped Fe3GaTe2 flakes 原始和掺镍Fe3GaTe2薄片的持久铁磁基态
IF 13.4 2区 材料科学
Nano Convergence Pub Date : 2024-12-12 DOI: 10.1186/s40580-024-00458-x
Ki-Hoon Son, Sehoon Oh, Junho Lee, Sobin Yun, Yunseo Shin, Shaohua Yan, Chaun Jang, Hong-Sub Lee, Hechang Lei, Se Young Park, Hyejin Ryu
{"title":"Persistent ferromagnetic ground state in pristine and Ni-doped Fe3GaTe2 flakes","authors":"Ki-Hoon Son,&nbsp;Sehoon Oh,&nbsp;Junho Lee,&nbsp;Sobin Yun,&nbsp;Yunseo Shin,&nbsp;Shaohua Yan,&nbsp;Chaun Jang,&nbsp;Hong-Sub Lee,&nbsp;Hechang Lei,&nbsp;Se Young Park,&nbsp;Hyejin Ryu","doi":"10.1186/s40580-024-00458-x","DOIUrl":"10.1186/s40580-024-00458-x","url":null,"abstract":"<div><p>Room-temperature magnetism and its stability upon miniaturization are essential characteristics required for materials for spintronic devices and information storage. Among various candidates, Fe<sub>3</sub>GaTe<sub>2</sub> stands out due to its high Curie temperature and strong perpendicular magnetic anisotropy (PMA), recently gaining large attention as one of the promising candidate materials for spintronics applications. In this study, we measured the thickness-dependent ferromagnetic properties of Fe<sub>3</sub>GaTe<sub>2</sub> and (Fe<sub>1 − x</sub>Ni<sub>x</sub>)<sub>3</sub>GaTe<sub>2</sub> (with x = 0.1) flakes. We observed that both pristine and Ni-doped Fe<sub>3</sub>GaTe<sub>2</sub> exhibit persistent ferromagnetism, with only a minor decrease in T<sub>C</sub> as the thickness is reduced to a few tens of nanometers. This capacity to retain robust ferromagnetic properties at reduced dimensions is highly advantageous for thin-film applications, which is crucial for the scaling of spintronic devices. Understanding and controlling thickness-dependent magnetic properties is fundamental to harnessing the full potential of Fe<sub>3</sub>GaTe<sub>2</sub> in van der Waals magnetic heterostructures and advanced spintronic technologies.</p></div>","PeriodicalId":712,"journal":{"name":"Nano Convergence","volume":"11 1","pages":""},"PeriodicalIF":13.4,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://nanoconvergencejournal.springeropen.com/counter/pdf/10.1186/s40580-024-00458-x","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142811125","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Li-ion transport in two-dimensional nanofluidic membranes 二维纳米流体膜中锂离子的输运
IF 13.4 2区 材料科学
Nano Convergence Pub Date : 2024-12-12 DOI: 10.1186/s40580-024-00465-y
Gyu Won Kim, Minwoo Lee, Jihong Bae, Jihoon Han, Seokmin Park, Wooyoung Shim
{"title":"Li-ion transport in two-dimensional nanofluidic membranes","authors":"Gyu Won Kim,&nbsp;Minwoo Lee,&nbsp;Jihong Bae,&nbsp;Jihoon Han,&nbsp;Seokmin Park,&nbsp;Wooyoung Shim","doi":"10.1186/s40580-024-00465-y","DOIUrl":"10.1186/s40580-024-00465-y","url":null,"abstract":"<div><p>The growing demand for lithium, driven by its critical role in lithium-ion batteries (LIBs) and other applications, has intensified the need for efficient extraction methods from aqua-based resources such as seawater. Among various approaches, 2D channel membranes have emerged as promising candidates due to their tunable ion selectivity and scalability. While significant progress has been made in achieving high Li<sup>+</sup>/Mg<sup>2+</sup> selectivity, enhancing Li<sup>+</sup> ion selectivity over Na<sup>+</sup> ion, the dominant monovalent cation in seawater, remains a challenge due to their similar properties. This review provides a comprehensive analysis of the fundamental mechanisms underlying Li<sup>+</sup> selectivity in 2D channel membranes, focusing on the dehydration and diffusion processes that dictate ion transport. Inspired by the principles of biological ion channels, we identify key factors—channel size, surface charge, and binding sites—that influence energy barriers and shape the interplay between dehydration and diffusion. We highlight recent progress in leveraging these factors to enhance Li<sup>+</sup>/Na<sup>+</sup> selectivity and address the challenges posed by counteracting effects in ion transport. While substantial advancements have been made, the lack of comprehensive principles guiding the interplay of these variables across permeation steps represents a key obstacle to optimizing Li<sup>+</sup>/Na<sup>+</sup> selectivity. Nonetheless, with their inherent chemical stability and fabrication scalability, 2D channel membranes offer significant potential for lithium extraction if these challenges can be addressed. This review provides insights into the current state of 2D channel membrane technologies and outlines future directions for achieving enhanced Li<sup>+</sup> ion selectivity, particularly in seawater applications.</p><h3>Graphical Abstract</h3>\u0000<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":712,"journal":{"name":"Nano Convergence","volume":"11 1","pages":""},"PeriodicalIF":13.4,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://nanoconvergencejournal.springeropen.com/counter/pdf/10.1186/s40580-024-00465-y","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142811126","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nano-fluorescence imaging: advancing lymphatic disease diagnosis and monitoring 纳米荧光成像:推进淋巴疾病的诊断和监测。
IF 13.4 2区 材料科学
Nano Convergence Pub Date : 2024-12-11 DOI: 10.1186/s40580-024-00462-1
Chae Yeon Han, Sang-Hun Choi, Soo-Hyang Chi, Ji Hyun Hong, Young-Eun Cho, Jihoon Kim
{"title":"Nano-fluorescence imaging: advancing lymphatic disease diagnosis and monitoring","authors":"Chae Yeon Han,&nbsp;Sang-Hun Choi,&nbsp;Soo-Hyang Chi,&nbsp;Ji Hyun Hong,&nbsp;Young-Eun Cho,&nbsp;Jihoon Kim","doi":"10.1186/s40580-024-00462-1","DOIUrl":"10.1186/s40580-024-00462-1","url":null,"abstract":"<div><p>The lymphatic system plays a crucial role in maintaining physiological homeostasis and regulating immune responses. Traditional imaging modalities such as magnetic resonance imaging, computerized tomography, and positron emission tomography have been widely used to diagnose disorders in the lymphatic system, including lymphedema, lymphangioma, lymphatic metastasis, and Castleman disease. Nano-fluorescence technology has distinct advantages—including naked-eye visibility, operational simplicity, portability of the laser, and real-time visibility—and serves as an innovative alternative to traditional imaging techniques. This review explores recent advancements in nano-fluorescence imaging aimed at enhancing the resolution of lymphatic structure, function, and immunity. After delineating the fundamental characteristics of lymphatic systems, it elaborates on the development of various nano-fluorescence systems (including nanoparticles incorporating fluorescent dyes and those with intrinsic fluorescence) while addressing key challenges such as photobleaching, limited tissue penetration, biocompatibility, and signal interference from biomolecules. Furthermore, this review highlights the clinical applications of nano-fluorescence and its potential integration into standard diagnostic protocols. Ongoing advancements in nanoparticle technology underscore the potential of nano-fluorescence to revolutionize the diagnosis and treatment of lymphatic disease.</p><h3>Graphical abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":712,"journal":{"name":"Nano Convergence","volume":"11 1","pages":""},"PeriodicalIF":13.4,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://nanoconvergencejournal.springeropen.com/counter/pdf/10.1186/s40580-024-00462-1","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142805840","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Recent progress in realizing novel one-dimensional polymorphs via nanotube encapsulation 纳米管封装实现新型一维多晶的最新进展。
IF 13.4 2区 材料科学
Nano Convergence Pub Date : 2024-12-04 DOI: 10.1186/s40580-024-00460-3
Yangjin Lee, Uje Choi, Kwanpyo Kim, Alex Zettl
{"title":"Recent progress in realizing novel one-dimensional polymorphs via nanotube encapsulation","authors":"Yangjin Lee,&nbsp;Uje Choi,&nbsp;Kwanpyo Kim,&nbsp;Alex Zettl","doi":"10.1186/s40580-024-00460-3","DOIUrl":"10.1186/s40580-024-00460-3","url":null,"abstract":"<div><p>Encapsulation of various materials inside nanotubes has emerged as an effective method in nanotechnology that facilitates the formation of novel one-dimensional (1D) structures and enhances their functionality. Because of the effects of geometrical confinement and electronic interactions with host nanotubes, encapsulated materials often exhibit low-dimensional polymorphic structures that differ from their bulk forms. These polymorphs exhibit unique properties, including altered electrical, optical, and magnetic behaviors, making them promising candidates for applications in electronics, energy storage, spintronics, and quantum devices. This review explores recent advancements in the encapsulation of a wide range of materials such as organic molecules, elemental substances, metal halides, metal chalcogenides, and other complex compounds. In particular, we focus on novel polymorphs formed through the geometrical confinement effect within the nanotubes. The atomic structure, other key properties, and potential applications of these encapsulated materials are discussed, highlighting the impact of nanotube encapsulation on their functionalities.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":712,"journal":{"name":"Nano Convergence","volume":"11 1","pages":""},"PeriodicalIF":13.4,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://nanoconvergencejournal.springeropen.com/counter/pdf/10.1186/s40580-024-00460-3","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142765303","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信