Nano Convergence最新文献

筛选
英文 中文
Two-dimensional material-based memristive devices for alternative computing 用于替代计算的基于二维材料的记忆器件。
IF 13.4 2区 材料科学
Nano Convergence Pub Date : 2024-06-27 DOI: 10.1186/s40580-024-00432-7
Jey Panisilvam, Ha Young Lee, Sujeong Byun, Daniel Fan, Sejeong Kim
{"title":"Two-dimensional material-based memristive devices for alternative computing","authors":"Jey Panisilvam,&nbsp;Ha Young Lee,&nbsp;Sujeong Byun,&nbsp;Daniel Fan,&nbsp;Sejeong Kim","doi":"10.1186/s40580-024-00432-7","DOIUrl":"10.1186/s40580-024-00432-7","url":null,"abstract":"<div><p>Two-dimensional (2D) materials have emerged as promising building blocks for next generation memristive devices, owing to their unique electronic, mechanical, and thermal properties, resulting in effective switching mechanisms for charge transport. Memristors are key components in a wide range of applications including neuromorphic computing, which is becoming increasingly important in artificial intelligence applications. Crossbar arrays are an important component in the development of hardware-based neural networks composed of 2D materials. In this paper, we summarize the current state of research on 2D material-based memristive devices utilizing different switching mechanisms, along with the application of these devices in neuromorphic crossbar arrays. Additionally, we discuss the challenges and future directions for the field.</p></div>","PeriodicalId":712,"journal":{"name":"Nano Convergence","volume":"11 1","pages":""},"PeriodicalIF":13.4,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11211314/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141465341","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Engineering extracellular vesicles for ROS scavenging and tissue regeneration 清除 ROS 和组织再生的细胞外囊泡工程。
IF 13.4 2区 材料科学
Nano Convergence Pub Date : 2024-06-26 DOI: 10.1186/s40580-024-00430-9
Ahmed Abdal Dayem, Ellie Yan, Minjae Do, Yoojung Kim, Yeongseo Lee, Ssang-Goo Cho, Deok-Ho Kim
{"title":"Engineering extracellular vesicles for ROS scavenging and tissue regeneration","authors":"Ahmed Abdal Dayem,&nbsp;Ellie Yan,&nbsp;Minjae Do,&nbsp;Yoojung Kim,&nbsp;Yeongseo Lee,&nbsp;Ssang-Goo Cho,&nbsp;Deok-Ho Kim","doi":"10.1186/s40580-024-00430-9","DOIUrl":"10.1186/s40580-024-00430-9","url":null,"abstract":"<div><p>Stem cell therapy holds promise for tissue regeneration, yet significant challenges persist. Emerging as a safer and potentially more effective alternative, extracellular vesicles (EVs) derived from stem cells exhibit remarkable abilities to activate critical signaling cascades, thereby facilitating tissue repair. EVs, nano-scale membrane vesicles, mediate intercellular communication by encapsulating a diverse cargo of proteins, lipids, and nucleic acids. Their therapeutic potential lies in delivering cargos, activating signaling pathways, and efficiently mitigating oxidative stress—an essential aspect of overcoming limitations in stem cell-based tissue repair. This review focuses on engineering and applying EVs in tissue regeneration, emphasizing their role in regulating reactive oxygen species (ROS) pathways. Additionally, we explore strategies to enhance EV therapeutic activity, including functionalization and incorporation of antioxidant defense proteins. Understanding these molecular mechanisms is crucial for optimizing EV-based regenerative therapies. Insights into EV and ROS signaling modulation pave the way for targeted and efficient regenerative therapies harnessing the potential of EVs.</p></div>","PeriodicalId":712,"journal":{"name":"Nano Convergence","volume":"11 1","pages":""},"PeriodicalIF":13.4,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://nanoconvergencejournal.springeropen.com/counter/pdf/10.1186/s40580-024-00430-9","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141449289","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nanoplasmonic sensors for extracellular vesicles and bacterial membrane vesicles 用于细胞外囊泡和细菌膜泡的纳米质子传感器。
IF 13.4 2区 材料科学
Nano Convergence Pub Date : 2024-06-25 DOI: 10.1186/s40580-024-00431-8
Aparna Neettiyath, Kyungwha Chung, Wenpeng Liu, Luke P. Lee
{"title":"Nanoplasmonic sensors for extracellular vesicles and bacterial membrane vesicles","authors":"Aparna Neettiyath,&nbsp;Kyungwha Chung,&nbsp;Wenpeng Liu,&nbsp;Luke P. Lee","doi":"10.1186/s40580-024-00431-8","DOIUrl":"10.1186/s40580-024-00431-8","url":null,"abstract":"<div><p>Extracellular vesicles (EVs) are promising tools for the early diagnosis of diseases, and bacterial membrane vesicles (MVs) are especially important in health and environment monitoring. However, detecting EVs or bacterial MVs presents significant challenges for the clinical translation of EV-based diagnostics. In this Review, we provide a comprehensive discussion on the basics of nanoplasmonic sensing and emphasize recent developments in nanoplasmonics-based optical sensors to effectively identify EVs or bacterial MVs. We explore various nanoplasmonic sensors tailored for EV or bacterial MV detection, emphasizing the application of localized surface plasmon resonance through gold nanoparticles and their multimers. Additionally, we highlight advanced EV detection techniques based on surface plasmon polaritons using plasmonic thin film and nanopatterned structures. Furthermore, we evaluate the improved detection capability of surface-enhanced Raman spectroscopy in identifying and classifying these vesicles, aided by plasmonic nanostructures. Nanoplasmonic sensing techniques have remarkable precision and sensitivity, making them a potential tool for accurate EV detection in clinical applications, facilitating point-of-care molecular diagnostics. Finally, we summarize the challenges associated with nanoplasmonic EV or bacterial MV sensors and offer insights into potential future directions for this evolving field.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":712,"journal":{"name":"Nano Convergence","volume":"11 1","pages":""},"PeriodicalIF":13.4,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://nanoconvergencejournal.springeropen.com/counter/pdf/10.1186/s40580-024-00431-8","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141449290","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
SERS biosensors for liquid biopsy towards cancer diagnosis by detection of various circulating biomarkers: current progress and perspectives 用于液体活检的 SERS 生物传感器,通过检测各种循环生物标记物诊断癌症:当前进展与前景。
IF 11.7 2区 材料科学
Nano Convergence Pub Date : 2024-05-29 DOI: 10.1186/s40580-024-00428-3
Nana Lyu, Amin Hassanzadeh-Barforoushi, Laura M. Rey Gomez, Wei Zhang, Yuling Wang
{"title":"SERS biosensors for liquid biopsy towards cancer diagnosis by detection of various circulating biomarkers: current progress and perspectives","authors":"Nana Lyu,&nbsp;Amin Hassanzadeh-Barforoushi,&nbsp;Laura M. Rey Gomez,&nbsp;Wei Zhang,&nbsp;Yuling Wang","doi":"10.1186/s40580-024-00428-3","DOIUrl":"10.1186/s40580-024-00428-3","url":null,"abstract":"<div><p>Liquid biopsy has emerged as a promising non-invasive strategy for cancer diagnosis, enabling the detection of various circulating biomarkers, including circulating tumor cells (CTCs), circulating tumor nucleic acids (ctNAs), circulating tumor-derived small extracellular vesicles (sEVs), and circulating proteins. Surface-enhanced Raman scattering (SERS) biosensors have revolutionized liquid biopsy by offering sensitive and specific detection methodologies for these biomarkers. This review comprehensively examines the application of SERS-based biosensors for identification and analysis of various circulating biomarkers including CTCs, ctNAs, sEVs and proteins in liquid biopsy for cancer diagnosis. The discussion encompasses a diverse range of SERS biosensor platforms, including label-free SERS assay, magnetic bead-based SERS assay, microfluidic device-based SERS system, and paper-based SERS assay, each demonstrating unique capabilities in enhancing the sensitivity and specificity for detection of liquid biopsy cancer biomarkers. This review critically assesses the strengths, limitations, and future directions of SERS biosensors in liquid biopsy for cancer diagnosis.</p></div>","PeriodicalId":712,"journal":{"name":"Nano Convergence","volume":"11 1","pages":""},"PeriodicalIF":11.7,"publicationDate":"2024-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://nanoconvergencejournal.springeropen.com/counter/pdf/10.1186/s40580-024-00428-3","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141174075","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Emergence of two distinct phase transitions in monolayer CoSe2 on graphene 石墨烯上单层 CoSe2 出现两种截然不同的相变。
IF 11.7 2区 材料科学
Nano Convergence Pub Date : 2024-05-24 DOI: 10.1186/s40580-024-00427-4
Tae Gyu Rhee, Nguyen Huu Lam, Yeong Gwang Kim, Minseon Gu, Jinwoong Hwang, Aaron Bostwick, Sung-Kwan Mo, Seung-Hyun Chun, Jungdae Kim, Young Jun Chang, Byoung Ki Choi
{"title":"Emergence of two distinct phase transitions in monolayer CoSe2 on graphene","authors":"Tae Gyu Rhee,&nbsp;Nguyen Huu Lam,&nbsp;Yeong Gwang Kim,&nbsp;Minseon Gu,&nbsp;Jinwoong Hwang,&nbsp;Aaron Bostwick,&nbsp;Sung-Kwan Mo,&nbsp;Seung-Hyun Chun,&nbsp;Jungdae Kim,&nbsp;Young Jun Chang,&nbsp;Byoung Ki Choi","doi":"10.1186/s40580-024-00427-4","DOIUrl":"10.1186/s40580-024-00427-4","url":null,"abstract":"<div><p>Dimensional modifications play a crucial role in various applications, especially in the context of device miniaturization, giving rise to novel quantum phenomena. The many-body dynamics induced by dimensional modifications, including electron-electron, electron-phonon, electron-magnon and electron-plasmon coupling, are known to significantly affect the atomic and electronic properties of the materials. By reducing the dimensionality of orthorhombic CoSe<sub>2</sub> and forming heterostructure with bilayer graphene using molecular beam epitaxy, we unveil the emergence of two types of phase transitions through angle-resolved photoemission spectroscopy and scanning tunneling microscopy measurements. We disclose that the 2 × 1 superstructure is associated with charge density wave induced by Fermi surface nesting, characterized by a transition temperature of 340 K. Additionally, another phase transition at temperature of 160 K based on temperature dependent gap evolution are observed with renormalized electronic structure induced by electron-boson coupling. These discoveries of the electronic and atomic modifications, influenced by electron-electron and electron-boson interactions, underscore that many-body physics play significant roles in understanding low-dimensional properties of non-van der Waals Co-chalcogenides and related heterostructures.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div><div><p>Two different pseudo-gaps and corresponding phase transitions are observed in monolayer orthorhombic CoSe<sub>2</sub> grown on graphene substrates.</p></div></div></figure></div></div>","PeriodicalId":712,"journal":{"name":"Nano Convergence","volume":"11 1","pages":""},"PeriodicalIF":11.7,"publicationDate":"2024-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://nanoconvergencejournal.springeropen.com/counter/pdf/10.1186/s40580-024-00427-4","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141092869","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Demonstration of an energy-efficient Ising solver composed of Ovonic threshold switch (OTS)-based nano-oscillators (OTSNOs) 演示由基于奥弗尼克阈值开关(OTS)的纳米振荡器(OTSNO)组成的高能效伊辛求解器。
IF 11.7 2区 材料科学
Nano Convergence Pub Date : 2024-05-23 DOI: 10.1186/s40580-024-00429-2
Young Woong Lee, Seon Jeong Kim, Jaewook Kim, Sangheon Kim, Jongkil Park, YeonJoo Jeong, Gyu Weon Hwang, Seongsik Park, Bae Ho Park, Suyoun Lee
{"title":"Demonstration of an energy-efficient Ising solver composed of Ovonic threshold switch (OTS)-based nano-oscillators (OTSNOs)","authors":"Young Woong Lee,&nbsp;Seon Jeong Kim,&nbsp;Jaewook Kim,&nbsp;Sangheon Kim,&nbsp;Jongkil Park,&nbsp;YeonJoo Jeong,&nbsp;Gyu Weon Hwang,&nbsp;Seongsik Park,&nbsp;Bae Ho Park,&nbsp;Suyoun Lee","doi":"10.1186/s40580-024-00429-2","DOIUrl":"10.1186/s40580-024-00429-2","url":null,"abstract":"<div><p>As there is an increasing need for an efficient solver of combinatorial optimization problems, much interest is paid to the Ising machine, which is a novel physics-driven computing system composed of coupled oscillators mimicking the dynamics of the system of coupled electronic spins. In this work, we propose an energy-efficient nano-oscillator, called OTSNO, which is composed of an Ovonic Threshold Switch (OTS) and an electrical resistor. We demonstrate that the OTSNO shows the synchronization behavior, an essential property for the realization of an Ising machine. Furthermore, we have discovered that the capacitive coupling is advantageous over the resistive coupling for the hardware implementation of an Ising solver by providing a larger margin of the variations of components. Finally, we implement an Ising machine composed of capacitively-coupled OTSNOs to demonstrate that the solution to a 14-node MaxCut problem can be obtained in 40 µs while consuming no more than 2.3 µJ of energy. Compared to a previous hardware implementation of the phase-transition nano-oscillator (PTNO)-based Ising machine, the OTSNO-based Ising machine in this work shows the performance of the increased speed by more than one order while consuming less energy by about an order.</p></div>","PeriodicalId":712,"journal":{"name":"Nano Convergence","volume":"11 1","pages":""},"PeriodicalIF":11.7,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://nanoconvergencejournal.springeropen.com/counter/pdf/10.1186/s40580-024-00429-2","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141086448","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Extracellular vesicles as nanotheranostic platforms for targeted neurological disorder interventions 将细胞外囊泡作为纳米otheranostic平台,用于神经系统疾病的靶向干预。
IF 11.7 2区 材料科学
Nano Convergence Pub Date : 2024-05-13 DOI: 10.1186/s40580-024-00426-5
Hye Kyu Choi, Meizi Chen, Li Ling Goldston, Ki-Bum Lee
{"title":"Extracellular vesicles as nanotheranostic platforms for targeted neurological disorder interventions","authors":"Hye Kyu Choi,&nbsp;Meizi Chen,&nbsp;Li Ling Goldston,&nbsp;Ki-Bum Lee","doi":"10.1186/s40580-024-00426-5","DOIUrl":"10.1186/s40580-024-00426-5","url":null,"abstract":"<div><p>Central Nervous System (CNS) disorders represent a profound public health challenge that affects millions of people around the world. Diseases such as Alzheimer’s disease (AD), Parkinson’s disease (PD), and traumatic brain injury (TBI) exemplify the complexities and diversities that complicate their early detection and the development of effective treatments. Amid these challenges, the emergence of nanotechnology and extracellular vesicles (EVs) signals a new dawn for treating and diagnosing CNS ailments. EVs are cellularly derived lipid bilayer nanosized particles that are pivotal in intercellular communication within the CNS and have the potential to revolutionize targeted therapeutic delivery and the identification of novel biomarkers. Integrating EVs with nanotechnology amplifies their diagnostic and therapeutic capabilities, opening new avenues for managing CNS diseases. This review focuses on examining the fascinating interplay between EVs and nanotechnology in CNS theranostics. Through highlighting the remarkable advancements and unique methodologies, we aim to offer valuable perspectives on how these approaches can bring about a revolutionary change in disease management. The objective is to harness the distinctive attributes of EVs and nanotechnology to forge personalized, efficient interventions for CNS disorders, thereby providing a beacon of hope for affected individuals. In short, the confluence of EVs and nanotechnology heralds a promising frontier for targeted and impactful treatments against CNS diseases, which continue to pose significant public health challenges. By focusing on personalized and powerful diagnostic and therapeutic methods, we might improve the quality of patients.</p></div>","PeriodicalId":712,"journal":{"name":"Nano Convergence","volume":"11 1","pages":""},"PeriodicalIF":11.7,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://nanoconvergencejournal.springeropen.com/counter/pdf/10.1186/s40580-024-00426-5","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140911225","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Quantum annealing-aided design of an ultrathin-metamaterial optical diode 超薄超材料光学二极管的量子退火辅助设计
IF 11.7 2区 材料科学
Nano Convergence Pub Date : 2024-05-09 DOI: 10.1186/s40580-024-00425-6
Seongmin Kim, Su-Jin Park, Seunghyun Moon, Qiushi Zhang, Sanghyo Hwang, Sun-Kyung Kim, Tengfei Luo, Eungkyu Lee
{"title":"Quantum annealing-aided design of an ultrathin-metamaterial optical diode","authors":"Seongmin Kim,&nbsp;Su-Jin Park,&nbsp;Seunghyun Moon,&nbsp;Qiushi Zhang,&nbsp;Sanghyo Hwang,&nbsp;Sun-Kyung Kim,&nbsp;Tengfei Luo,&nbsp;Eungkyu Lee","doi":"10.1186/s40580-024-00425-6","DOIUrl":"10.1186/s40580-024-00425-6","url":null,"abstract":"<div><p>Thin-film optical diodes are important elements for miniaturizing photonic systems. However, the design of optical diodes relies on empirical and heuristic approaches. This poses a significant challenge for identifying optimal structural models of optical diodes at given wavelengths. Here, we leverage a quantum annealing-enhanced active learning scheme to automatically identify optimal designs of 130 nm-thick optical diodes. An optical diode is a stratified volume diffractive film discretized into rectangular pixels, where each pixel is assigned to either a metal or dielectric. The proposed scheme identifies the optimal material states of each pixel, maximizing the quality of optical isolation at given wavelengths. Consequently, we successfully identify optimal structures at three specific wavelengths (600, 800, and 1000 nm). In the best-case scenario, when the forward transmissivity is 85%, the backward transmissivity is 0.1%. Electromagnetic field profiles reveal that the designed diode strongly supports surface plasmons coupled across counterintuitive metal–dielectric pixel arrays. Thereby, it yields the transmission of first-order diffracted light with a high amplitude. In contrast, backward transmission has decoupled surface plasmons that redirect Poynting vectors back to the incident medium, resulting in near attenuation of its transmission. In addition, we experimentally verify the optical isolation function of the optical diode.</p></div>","PeriodicalId":712,"journal":{"name":"Nano Convergence","volume":"11 1","pages":""},"PeriodicalIF":11.7,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://nanoconvergencejournal.springeropen.com/counter/pdf/10.1186/s40580-024-00425-6","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140895168","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Delivery-mediated exosomal therapeutics in ischemia–reperfusion injury: advances, mechanisms, and future directions 缺血再灌注损伤中的递送介导外泌体疗法:进展、机制和未来方向
IF 11.7 2区 材料科学
Nano Convergence Pub Date : 2024-04-30 DOI: 10.1186/s40580-024-00423-8
Shengzhe Ding, Yu-Jin Kim, Kai-Yu Huang, Daniel Um, Youngmee Jung, Hyunjoon Kong
{"title":"Delivery-mediated exosomal therapeutics in ischemia–reperfusion injury: advances, mechanisms, and future directions","authors":"Shengzhe Ding,&nbsp;Yu-Jin Kim,&nbsp;Kai-Yu Huang,&nbsp;Daniel Um,&nbsp;Youngmee Jung,&nbsp;Hyunjoon Kong","doi":"10.1186/s40580-024-00423-8","DOIUrl":"10.1186/s40580-024-00423-8","url":null,"abstract":"<div><p>Ischemia-reperfusion injury (IRI) poses significant challenges across various organ systems, including the heart, brain, and kidneys. Exosomes have shown great potentials and applications in mitigating IRI-induced cell and tissue damage through modulating inflammatory responses, enhancing angiogenesis, and promoting tissue repair. Despite these advances, a more systematic understanding of exosomes from different sources and their biotransport is critical for optimizing therapeutic efficacy and accelerating the clinical adoption of exosomes for IRI therapies. Therefore, this review article overviews the administration routes of exosomes from different sources, such as mesenchymal stem cells and other somatic cells, in the context of IRI treatment. Furthermore, this article covers how the delivered exosomes modulate molecular pathways of recipient cells, aiding in the prevention of cell death and the promotions of regeneration in IRI models. In the end, this article discusses the ongoing research efforts and propose future research directions of exosome-based therapies.</p><h3>Graphical Abstract</h3>\u0000<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":712,"journal":{"name":"Nano Convergence","volume":"11 1","pages":""},"PeriodicalIF":11.7,"publicationDate":"2024-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://nanoconvergencejournal.springeropen.com/counter/pdf/10.1186/s40580-024-00423-8","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140818833","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Microfluidics for disease diagnostics based on surface-enhanced raman scattering detection 基于表面增强拉曼散射检测的疾病诊断微流体技术
IF 11.7 2区 材料科学
Nano Convergence Pub Date : 2024-04-30 DOI: 10.1186/s40580-024-00424-7
Xiangdong Yu, Sohyun Park, Sungwoon Lee, Sang-Woo Joo, Jaebum Choo
{"title":"Microfluidics for disease diagnostics based on surface-enhanced raman scattering detection","authors":"Xiangdong Yu,&nbsp;Sohyun Park,&nbsp;Sungwoon Lee,&nbsp;Sang-Woo Joo,&nbsp;Jaebum Choo","doi":"10.1186/s40580-024-00424-7","DOIUrl":"10.1186/s40580-024-00424-7","url":null,"abstract":"<div><p>This review reports diverse microfluidic systems utilizing surface-enhanced Raman scattering (SERS) detection for disease diagnosis. Integrating SERS detection technology, providing high-sensitivity detection, and microfluidic technology for manipulating small liquid samples in microdevices has expanded the analytical capabilities previously confined to larger settings. This study explores the principles and uses of various SERS-based microfluidic devices developed over the last two decades. Specifically, we investigate the operational principles of documented SERS-based microfluidic devices, including continuous-flow channels, microarray-embedded microfluidic channels, droplet microfluidic channels, digital droplet channels, and gradient microfluidic channels. We also examine their applications in biomedical diagnostics. In conclusion, we summarize the areas requiring further development to translate these SERS-based microfluidic technologies into practical applications in clinical diagnostics.</p></div>","PeriodicalId":712,"journal":{"name":"Nano Convergence","volume":"11 1","pages":""},"PeriodicalIF":11.7,"publicationDate":"2024-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://nanoconvergencejournal.springeropen.com/counter/pdf/10.1186/s40580-024-00424-7","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140814118","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信