Nano Convergence最新文献

筛选
英文 中文
Simultaneous low-frequency vibration isolation and energy harvesting via attachable metamaterials 通过可附着超材料同时实现低频振动隔离和能量收集
IF 13.4 2区 材料科学
Nano Convergence Pub Date : 2024-09-26 DOI: 10.1186/s40580-024-00445-2
Jaeyub Hyun, Jaesoon Jung, Jeongwon Park, Wonjae Choi, Miso Kim
{"title":"Simultaneous low-frequency vibration isolation and energy harvesting via attachable metamaterials","authors":"Jaeyub Hyun,&nbsp;Jaesoon Jung,&nbsp;Jeongwon Park,&nbsp;Wonjae Choi,&nbsp;Miso Kim","doi":"10.1186/s40580-024-00445-2","DOIUrl":"10.1186/s40580-024-00445-2","url":null,"abstract":"<div><p>In this study, we achieved energy localization and amplification of flexural vibrations by utilizing the defect mode of plate-attachable locally resonant metamaterials, thereby realizing compact and low-frequency vibration energy suppression and energy harvesting with enhanced output performance. We designed a cantilever-based metamaterial unit cell to induce local resonance inside a periodic supercell structure and form a bandgap within the targeted low-frequency range of 300–450 Hz. Subsequently, a defect area was created by removing some unit cells to break the periodicity inside the metamaterial, which led to the isolation and localization of the vibration energy. This localized vibration energy was simultaneously converted into electrical energy by a piezoelectric energy harvester coupled with a metamaterial inside the defect area. Consequently, a substantially enhanced energy harvesting output power was achieved at 360 Hz, which was 43-times higher than that of a bare plate without metamaterials. The proposed local resonant metamaterial offers a useful and multifunctional platform with the capability of vibration energy isolation and harvesting, while exhibiting easy handling via attachable designs that can be tailored in the low-frequency regime.</p></div>","PeriodicalId":712,"journal":{"name":"Nano Convergence","volume":"11 1","pages":""},"PeriodicalIF":13.4,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://nanoconvergencejournal.springeropen.com/counter/pdf/10.1186/s40580-024-00445-2","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142324407","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Correction to: PFP@PLGA/Cu12Sb4S13‑mediated PTT ablates hepatocellular carcinoma by inhibiting the RAS/MAPK/MT‑CO1 signaling pathway 更正为PFP@PLGA/Cu12Sb4S13 介导的 PTT 通过抑制 RAS/MAPK/MT-CO1 信号通路消融肝细胞癌
IF 13.4 2区 材料科学
Nano Convergence Pub Date : 2024-09-18 DOI: 10.1186/s40580-024-00444-3
Tianxiu Dong, Jian Jiang, Hao Zhang, Hongyuan Liu, Xiaomeng Zou, Jiamei Niu, Yingxuan Mao, Mingwei Zhu, Xi Chen, Zizhuo Li, Yaodong Chen, Chunying Shi, Xiuhua Yang
{"title":"Correction to: PFP@PLGA/Cu12Sb4S13‑mediated PTT ablates hepatocellular carcinoma by inhibiting the RAS/MAPK/MT‑CO1 signaling pathway","authors":"Tianxiu Dong,&nbsp;Jian Jiang,&nbsp;Hao Zhang,&nbsp;Hongyuan Liu,&nbsp;Xiaomeng Zou,&nbsp;Jiamei Niu,&nbsp;Yingxuan Mao,&nbsp;Mingwei Zhu,&nbsp;Xi Chen,&nbsp;Zizhuo Li,&nbsp;Yaodong Chen,&nbsp;Chunying Shi,&nbsp;Xiuhua Yang","doi":"10.1186/s40580-024-00444-3","DOIUrl":"10.1186/s40580-024-00444-3","url":null,"abstract":"","PeriodicalId":712,"journal":{"name":"Nano Convergence","volume":"11 1","pages":""},"PeriodicalIF":13.4,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://nanoconvergencejournal.springeropen.com/counter/pdf/10.1186/s40580-024-00444-3","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142236082","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Perovskite nanocomposites: synthesis, properties, and applications from renewable energy to optoelectronics 过氧化物纳米复合材料:从可再生能源到光电子学的合成、特性和应用。
IF 13.4 2区 材料科学
Nano Convergence Pub Date : 2024-09-09 DOI: 10.1186/s40580-024-00440-7
Yunseok Choi, Sangmoon Han, Bo-In Park, Zhihao Xu, Qingge Huang, Sanggeun Bae, Justin S. Kim, Sun Ok Kim, Yuan Meng, Seung‐Il Kim, Ji‐Yun Moon, Ilpyo Roh, Ji-Won Park, Sang‑Hoon Bae
{"title":"Perovskite nanocomposites: synthesis, properties, and applications from renewable energy to optoelectronics","authors":"Yunseok Choi,&nbsp;Sangmoon Han,&nbsp;Bo-In Park,&nbsp;Zhihao Xu,&nbsp;Qingge Huang,&nbsp;Sanggeun Bae,&nbsp;Justin S. Kim,&nbsp;Sun Ok Kim,&nbsp;Yuan Meng,&nbsp;Seung‐Il Kim,&nbsp;Ji‐Yun Moon,&nbsp;Ilpyo Roh,&nbsp;Ji-Won Park,&nbsp;Sang‑Hoon Bae","doi":"10.1186/s40580-024-00440-7","DOIUrl":"10.1186/s40580-024-00440-7","url":null,"abstract":"<div><p>The oxide and halide perovskite materials with a ABX<sub>3</sub> structure exhibit a number of excellent properties, including a high dielectric constant, electrochemical properties, a wide band gap, and a large absorption coefficient. These properties have led to a range of applications, including renewable energy and optoelectronics, where high-performance catalysts are needed. However, it is difficult for a single structure of perovskite alone to simultaneously fulfill the diverse needs of multiple applications, such as high performance and good stability at the same time. Consequently, perovskite nanocomposites have been developed to address the current limitations and enhance their functionality by combining perovskite with two or more materials to create complementary materials. This review paper categorizes perovskite nanocomposites according to their structural composition and outlines their synthesis methodologies, as well as their applications in various fields. These include fuel cells, electrochemical water splitting, CO<sub>2</sub> mitigation, supercapacitors, and optoelectronic devices. Additionally, the review presents a summary of their research status, practical challenges, and future prospects in the fields of renewable energy and electronics.</p><h3>Graphical abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":712,"journal":{"name":"Nano Convergence","volume":"11 1","pages":""},"PeriodicalIF":13.4,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://nanoconvergencejournal.springeropen.com/counter/pdf/10.1186/s40580-024-00440-7","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142152859","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Correction: Emergence of two distinct phase transitions in monolayer CoSe2 on graphene 更正:石墨烯上单层 CoSe2 出现两种截然不同的相变
IF 13.4 2区 材料科学
Nano Convergence Pub Date : 2024-08-31 DOI: 10.1186/s40580-024-00438-1
Tae Gyu Rhee, Nguyen Huu Lam, Yeong Gwang Kim, Minseon Gu, Jinwoong Hwang, Aaron Bostwick, Sung-Kwan Mo, Seung-Hyun Chun, Jungdae Kim, Young Jun Chang, Byoung Ki Choi
{"title":"Correction: Emergence of two distinct phase transitions in monolayer CoSe2 on graphene","authors":"Tae Gyu Rhee,&nbsp;Nguyen Huu Lam,&nbsp;Yeong Gwang Kim,&nbsp;Minseon Gu,&nbsp;Jinwoong Hwang,&nbsp;Aaron Bostwick,&nbsp;Sung-Kwan Mo,&nbsp;Seung-Hyun Chun,&nbsp;Jungdae Kim,&nbsp;Young Jun Chang,&nbsp;Byoung Ki Choi","doi":"10.1186/s40580-024-00438-1","DOIUrl":"10.1186/s40580-024-00438-1","url":null,"abstract":"","PeriodicalId":712,"journal":{"name":"Nano Convergence","volume":"11 1","pages":""},"PeriodicalIF":13.4,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://nanoconvergencejournal.springeropen.com/counter/pdf/10.1186/s40580-024-00438-1","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142099886","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Excimer-ultraviolet-lamp-assisted selective etching of single-layer graphene and its application in edge-contact devices 准分子紫外灯辅助选择性蚀刻单层石墨烯及其在边缘接触器件中的应用。
IF 13.4 2区 材料科学
Nano Convergence Pub Date : 2024-08-22 DOI: 10.1186/s40580-024-00442-5
Minjeong Shin, Jin Hong Kim, Jin-Yong Ko, Mohd Musaib Haidari, Dong Jin Jang, Kihyun Lee, Kwanpyo Kim, Hakseong Kim, Bae Ho Park, Jin Sik Choi
{"title":"Excimer-ultraviolet-lamp-assisted selective etching of single-layer graphene and its application in edge-contact devices","authors":"Minjeong Shin,&nbsp;Jin Hong Kim,&nbsp;Jin-Yong Ko,&nbsp;Mohd Musaib Haidari,&nbsp;Dong Jin Jang,&nbsp;Kihyun Lee,&nbsp;Kwanpyo Kim,&nbsp;Hakseong Kim,&nbsp;Bae Ho Park,&nbsp;Jin Sik Choi","doi":"10.1186/s40580-024-00442-5","DOIUrl":"10.1186/s40580-024-00442-5","url":null,"abstract":"<div><p>Since the discovery of graphene and its remarkable properties, researchers have actively explored advanced graphene-patterning technologies. While the etching process is pivotal in shaping graphene channels, existing etching techniques have limitations such as low speed, high cost, residue contamination, and rough edges. Therefore, the development of facile and efficient etching methods is necessary. This study entailed the development of a novel technique for patterning graphene through dry etching, utilizing selective photochemical reactions precisely targeted at single-layer graphene (SLG) surfaces. This process is facilitated by an excimer ultraviolet lamp emitting light at a wavelength of 172 nm. The effectiveness of this technique in selectively removing SLG over large areas, leaving the few-layer graphene intact and clean, was confirmed by various spectroscopic analyses. Furthermore, we explored the application of this technique to device fabrication, revealing its potential to enhance the electrical properties of SLG-based devices. One-dimensional (1D) edge contacts fabricated using this method not only exhibited enhanced electrical transport characteristics compared to two-dimensional contact devices but also demonstrated enhanced efficiency in fabricating conventional 1D-contacted devices. This study addresses the demand for advanced technologies suitable for next-generation graphene devices, providing a promising and versatile graphene-patterning approach with broad applicability and high efficiency.</p></div>","PeriodicalId":712,"journal":{"name":"Nano Convergence","volume":"11 1","pages":""},"PeriodicalIF":13.4,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://nanoconvergencejournal.springeropen.com/counter/pdf/10.1186/s40580-024-00442-5","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142034868","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Advancing SERS as a quantitative technique: challenges, considerations, and correlative approaches to aid validation 推动 SERS 成为一种定量技术:挑战、考虑因素和有助于验证的相关方法。
IF 13.4 2区 材料科学
Nano Convergence Pub Date : 2024-08-17 DOI: 10.1186/s40580-024-00443-4
Sian Sloan-Dennison, Gregory Q. Wallace, Waleed A. Hassanain, Stacey Laing, Karen Faulds, Duncan Graham
{"title":"Advancing SERS as a quantitative technique: challenges, considerations, and correlative approaches to aid validation","authors":"Sian Sloan-Dennison,&nbsp;Gregory Q. Wallace,&nbsp;Waleed A. Hassanain,&nbsp;Stacey Laing,&nbsp;Karen Faulds,&nbsp;Duncan Graham","doi":"10.1186/s40580-024-00443-4","DOIUrl":"10.1186/s40580-024-00443-4","url":null,"abstract":"<div><p>Surface-enhanced Raman scattering (SERS) remains a significant area of research since it’s discovery 50 years ago. The surface-based technique has been used in a wide variety of fields, most prominently in chemical detection, cellular imaging and medical diagnostics, offering high sensitivity and specificity when probing and quantifying a chosen analyte or monitoring nanoparticle uptake and accumulation. However, despite its promise, SERS is mostly confined to academic laboratories and is not recognised as a gold standard analytical technique. This is due to the variations that are observed in SERS measurements, mainly caused by poorly characterised SERS substrates, lack of universal calibration methods and uncorrelated results. To convince the wider scientific community that SERS should be a routinely used analytical technique, the field is now focusing on methods that will increase the reproducibility of the SERS signals and how to validate the results with more well-established techniques. This review explores the difficulties experienced by SERS users, the methods adopted to reduce variation and suggestions of best practices and strategies that should be adopted if one is to achieve absolute quantification.</p><h3>Graphical Abstract</h3>\u0000<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":712,"journal":{"name":"Nano Convergence","volume":"11 1","pages":""},"PeriodicalIF":13.4,"publicationDate":"2024-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://nanoconvergencejournal.springeropen.com/counter/pdf/10.1186/s40580-024-00443-4","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141995080","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Conveyor CVD to high-quality and productivity of large-area graphene and its potentiality 通过输送式 CVD 实现大面积石墨烯的高质量和高生产率及其潜力。
IF 13.4 2区 材料科学
Nano Convergence Pub Date : 2024-08-14 DOI: 10.1186/s40580-024-00439-0
Dong Yun Lee, Jungtae Nam, Gil Yong Lee, Imbok Lee, A-Rang Jang, Keun Soo Kim
{"title":"Conveyor CVD to high-quality and productivity of large-area graphene and its potentiality","authors":"Dong Yun Lee,&nbsp;Jungtae Nam,&nbsp;Gil Yong Lee,&nbsp;Imbok Lee,&nbsp;A-Rang Jang,&nbsp;Keun Soo Kim","doi":"10.1186/s40580-024-00439-0","DOIUrl":"10.1186/s40580-024-00439-0","url":null,"abstract":"<div><p>The mass production of high-quality graphene is required for industrial application as a future electronic material. However, the chemical vapor deposition (CVD) systems previously studied for graphene production face bottlenecks in terms of quality, speed, and reproducibility. Herein, we report a novel conveyor CVD system that enables rapid graphene synthesis using liquid precursors. Pristine and nitrogen-doped graphene samples of a size comparable to a smartphone (15 cm × 5 cm) are successfully synthesized at temperatures of 900, 950, and 1000 °C using butane and pyridine, respectively. Raman spectroscopy allows optimization of the rapid-synthesis conditions to achieve uniformity and high quality. By conducting compositional analysis via X-ray photoelectron spectroscopy as well as electrical characterization, it is confirmed that graphene synthesis and nitrogen doping degree can be adjusted by varying the synthesis conditions. Testing the corresponding graphene samples as gas-sensor channels for NH<sub>3</sub> and NO<sub>2</sub> and evaluating their response characteristics show that the gas sensors exhibit polar characteristics in terms of gas adsorption and desorption depending on the type of gas, with contrasting characteristics depending on the presence or absence of nitrogen doping; nitrogen-doped graphene exhibits superior gas-sensing sensitivity and response speed compared with pristine graphene.</p></div>","PeriodicalId":712,"journal":{"name":"Nano Convergence","volume":"11 1","pages":""},"PeriodicalIF":13.4,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://nanoconvergencejournal.springeropen.com/counter/pdf/10.1186/s40580-024-00439-0","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141981438","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mechanism exploration of synergistic photo-immunotherapy strategy based on a novel exosome-like nanosystem for remodeling the immune microenvironment of HCC 基于新型外泌体纳米系统的协同光免疫治疗策略对重塑 HCC 免疫微环境的机制探索
IF 13.4 2区 材料科学
Nano Convergence Pub Date : 2024-08-14 DOI: 10.1186/s40580-024-00441-6
Yichi Chen, Xudong Li, Haitao Shang, Yucao Sun, Chunyue Wang, Xiaodong Wang, Huimin Tian, Huajing Yang, Lei Zhang, Liwen Deng, Kuikun Yang, Bolin Wu, Wen Cheng
{"title":"Mechanism exploration of synergistic photo-immunotherapy strategy based on a novel exosome-like nanosystem for remodeling the immune microenvironment of HCC","authors":"Yichi Chen,&nbsp;Xudong Li,&nbsp;Haitao Shang,&nbsp;Yucao Sun,&nbsp;Chunyue Wang,&nbsp;Xiaodong Wang,&nbsp;Huimin Tian,&nbsp;Huajing Yang,&nbsp;Lei Zhang,&nbsp;Liwen Deng,&nbsp;Kuikun Yang,&nbsp;Bolin Wu,&nbsp;Wen Cheng","doi":"10.1186/s40580-024-00441-6","DOIUrl":"10.1186/s40580-024-00441-6","url":null,"abstract":"<div><p>The immunosuppressive tumor microenvironment (TME) has become a major challenge in cancer immunotherapy, with abundant tumor-associated macrophages (TAMs) playing a key role in promoting tumor immune escape by displaying an immunosuppressive (M2) phenotype. Recently, it was reported that M1 macrophage-derived nanovesicles (M1NVs) can reprogram TAMs to an anti-tumor M1 phenotype, thereby significantly alleviating the immunosuppressive TME and enhancing the anti-tumor efficacy of immunotherapy. Herein, we developed M1NVs loaded with mesoporous dopamine (MPDA) and indocyanine green (ICG), which facilitated the recruitment of M2 TAMs through synergistic photothermal and photodynamic therapy. Thereafter, M1NVs can induce M1 repolarization of TAMs, resulting in increased infiltration of cytotoxic T lymphocytes within the tumor to promote tumor regression. This study investigated the effect of phototherapy on the immune environment of liver cancer using single-cell RNA sequencing (scRNA-seq) by comparing HCC tissues before and after MPDA/ICG@M1NVs + NIR treatment. The results showed significant shifts in cell composition and gene expression, with decreases in epithelial cells, B cells, and macrophages and increases in neutrophils and myeloid cells. Additionally, gene analysis indicated a reduction in pro-inflammatory signals and immunosuppressive functions, along with enhanced B-cell function and anti-tumor immunity, downregulation of the Gtsf1 gene in the epithelial cells of the MPDA/ICG @M1NVs + NIR group, and decreased expression of the lars2 gene in immune subpopulations. Eno3 expression is reduced in M1 macrophages, whereas Clec4a3 expression is downregulated in M2 macrophages. Notably, the B cell population decreased, whereas Pou2f2 expression increased. These genes regulate cell growth, death, metabolism, and tumor environment, indicating their key role in HCC progression. This study highlights the potential for understanding cellular and molecular dynamics to improve immunotherapy.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":712,"journal":{"name":"Nano Convergence","volume":"11 1","pages":""},"PeriodicalIF":13.4,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://nanoconvergencejournal.springeropen.com/counter/pdf/10.1186/s40580-024-00441-6","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141974834","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Investigating composite electrode materials of metal oxides for advanced energy storage applications 研究用于先进储能应用的金属氧化物复合电极材料。
IF 13.4 2区 材料科学
Nano Convergence Pub Date : 2024-07-30 DOI: 10.1186/s40580-024-00437-2
Parthiban Pazhamalai, Vignesh Krishnan, Mohamed Sadiq Mohamed Saleem, Sang-Jae Kim, Hye-Won Seo
{"title":"Investigating composite electrode materials of metal oxides for advanced energy storage applications","authors":"Parthiban Pazhamalai,&nbsp;Vignesh Krishnan,&nbsp;Mohamed Sadiq Mohamed Saleem,&nbsp;Sang-Jae Kim,&nbsp;Hye-Won Seo","doi":"10.1186/s40580-024-00437-2","DOIUrl":"10.1186/s40580-024-00437-2","url":null,"abstract":"<div><p>Electrochemical energy systems mark a pivotal advancement in the energy sector, delivering substantial improvements over conventional systems. Yet, a major challenge remains the deficiency in storage technology to effectively retain the energy produced. Amongst these are batteries and supercapacitors, renowned for their versatility and efficiency, which depend heavily on the quality of their electrode materials. Metal oxide composites, in particular, have emerged as highly promising due to the synergistic effects that significantly enhance their functionality and efficiency beyond individual components. This review explores the application of metal oxide composites in the electrodes of batteries and SCs, focusing on various material perspectives and synthesis methodologies, including exfoliation and hydrothermal/solvothermal processes. It also examines how these methods influence device performance. Furthermore, the review confronts the challenges and charts future directions for metal oxide composite-based energy storage systems, critically evaluating aspects such as scalability of synthesis, cost-effectiveness, environmental sustainability, and integration with advanced nanomaterials and electrolytes. These factors are crucial for advancing next-generation energy storage technologies, striving to enhance performance while upholding sustainability and economic viability.</p></div>","PeriodicalId":712,"journal":{"name":"Nano Convergence","volume":"11 1","pages":""},"PeriodicalIF":13.4,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11289214/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141854492","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Unveiling the distinctive mechanical and thermal properties of γ-GeSe 揭示γ-GeSe独特的机械和热特性。
IF 13.4 2区 材料科学
Nano Convergence Pub Date : 2024-07-15 DOI: 10.1186/s40580-024-00436-3
Jinsub Park, Yugyeong Je, Joonho Kim, Je Myoung Park, Joong-Eon Jung, Hyeonsik Cheong, Sang Wook Lee, Kwanpyo Kim
{"title":"Unveiling the distinctive mechanical and thermal properties of γ-GeSe","authors":"Jinsub Park,&nbsp;Yugyeong Je,&nbsp;Joonho Kim,&nbsp;Je Myoung Park,&nbsp;Joong-Eon Jung,&nbsp;Hyeonsik Cheong,&nbsp;Sang Wook Lee,&nbsp;Kwanpyo Kim","doi":"10.1186/s40580-024-00436-3","DOIUrl":"10.1186/s40580-024-00436-3","url":null,"abstract":"<div><p>γ-GeSe is a newly identified polymorph among group-IV monochalcogenides, characterized by a distinctive interatomic bonding configuration. Despite its promising applications in electrical and thermal domains, the experimental verification of its mechanical and thermal properties remains unreported. Here, we experimentally characterize the in-plane Young’s modulus (<i>E</i>) and thermal conductivity (<span>(:kappa:)</span>) of γ-GeSe. The mechanical vibrational modes of freestanding γ-GeSe flakes are measured using optical interferometry. Nano-indentation via atomic force microscopy is also conducted to induce mechanical deformation and to extract the <i>E</i>. Comparison with finite-element simulations reveals that the <i>E</i> is 97.3<span>(:pm:)</span>7.5 GPa as determined by optical interferometry and 109.4<span>(:pm:)</span>13.5 GPa as established through the nano-indentation method. Additionally, optothermal Raman spectroscopy reveals that γ-GeSe has a lattice thermal conductivity of 2.3 <span>(:pm:)</span> 0.4 Wm<sup>−1</sup>K<sup>−1</sup> and a total thermal conductivity of 7.5 <span>(:pm:)</span> 0.4 Wm<sup>−1</sup>K<sup>−1</sup> in the in-plane direction at room temperature. The notably high <span>(:E/kappa:)</span> ratio in γ-GeSe, compared to other layered materials, underscores its distinctive structural and dynamic characteristics.</p></div>","PeriodicalId":712,"journal":{"name":"Nano Convergence","volume":"11 1","pages":""},"PeriodicalIF":13.4,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://nanoconvergencejournal.springeropen.com/counter/pdf/10.1186/s40580-024-00436-3","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141618922","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信