Nano ConvergencePub Date : 2023-11-16DOI: 10.1186/s40580-023-00401-6
Philipp Schadte, Franziska Rademacher, Gerrit Andresen, Marie Hellfritzsch, Haoyi Qiu, Gregor Maschkowitz, Regine Gläser, Nina Heinemann, Daniel Drücke, Helmut Fickenscher, Regina Scherließ, Jürgen Harder, Rainer Adelung, Leonard Siebert
{"title":"3D-printed wound dressing platform for protein administration based on alginate and zinc oxide tetrapods","authors":"Philipp Schadte, Franziska Rademacher, Gerrit Andresen, Marie Hellfritzsch, Haoyi Qiu, Gregor Maschkowitz, Regine Gläser, Nina Heinemann, Daniel Drücke, Helmut Fickenscher, Regina Scherließ, Jürgen Harder, Rainer Adelung, Leonard Siebert","doi":"10.1186/s40580-023-00401-6","DOIUrl":"10.1186/s40580-023-00401-6","url":null,"abstract":"<div><p>Wound treatment requires a plethora of independent properties. Hydration, anti-bacterial properties, oxygenation and patient-specific drug delivery all contribute to the best possible wound healing. Three-dimensional (3D) printing has emerged as a set of techniques to realize individually adapted wound dressings with open porous structure from biomedically optimized materials. To include all the desired properties into the so-called bioinks is still challenging. In this work, a bioink system based on anti-bacterial zinc oxide tetrapods (t-ZnO) and biocompatible sodium alginate is presented. Additive manufacturing of these hydrogels with high t-ZnO content (up to 15 wt.%) could be realized. Additionally, protein adsorption on the t-ZnO particles was evaluated to test their suitability as carriers for active pharmaceutical ingredients (APIs). Open porous and closed cell printed wound dressings were tested for their cell and skin compatibility and anti-bacterial properties. In these categories, the open porous constructs exhibited protruding t-ZnO arms and proved to be anti-bacterial. Dermatological tests on ex vivo skin showed no negative influence of the alginate wound dressing on the skin, making this bioink an ideal carrier and evaluation platform for APIs in wound treatment and healing.</p></div>","PeriodicalId":712,"journal":{"name":"Nano Convergence","volume":"10 1","pages":""},"PeriodicalIF":11.7,"publicationDate":"2023-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://nanoconvergencejournal.springeropen.com/counter/pdf/10.1186/s40580-023-00401-6","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134796698","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nano ConvergencePub Date : 2023-11-15DOI: 10.1186/s40580-023-00402-5
Jungbin Yoon, Hohyeon Han, Jinah Jang
{"title":"Nanomaterials-incorporated hydrogels for 3D bioprinting technology","authors":"Jungbin Yoon, Hohyeon Han, Jinah Jang","doi":"10.1186/s40580-023-00402-5","DOIUrl":"10.1186/s40580-023-00402-5","url":null,"abstract":"<div><p>In the field of tissue engineering and regenerative medicine, various hydrogels derived from the extracellular matrix have been utilized for creating engineered tissues and implantable scaffolds. While these hydrogels hold immense promise in the healthcare landscape, conventional bioinks based on ECM hydrogels face several challenges, particularly in terms of lacking the necessary mechanical properties required for 3D bioprinting process. To address these limitations, researchers are actively exploring novel nanomaterial-reinforced ECM hydrogels for both mechanical and functional aspects. In this review, we focused on discussing recent advancements in the fabrication of engineered tissues and monitoring systems using nanobioinks and nanomaterials via 3D bioprinting technology. We highlighted the synergistic benefits of combining numerous nanomaterials into ECM hydrogels and imposing geometrical effects by 3D bioprinting technology. Furthermore, we also elaborated on critical issues remaining at the moment, such as the inhomogeneous dispersion of nanomaterials and consequent technical and practical issues, in the fabrication of complex 3D structures with nanobioinks and nanomaterials. Finally, we elaborated on plausible outlooks for facilitating the use of nanomaterials in biofabrication and advancing the function of engineered tissues.</p></div>","PeriodicalId":712,"journal":{"name":"Nano Convergence","volume":"10 1","pages":""},"PeriodicalIF":11.7,"publicationDate":"2023-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://nanoconvergencejournal.springeropen.com/counter/pdf/10.1186/s40580-023-00402-5","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134648097","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nano ConvergencePub Date : 2023-10-30DOI: 10.1186/s40580-023-00399-x
Lina Kim, Seongjae Jo, Gyeong-Ji Kim, Kyung Ho Kim, Sung Eun Seo, Eunsu Ryu, Chan Jae Shin, Yu Kyung Kim, Jeong-Woo Choi, Oh Seok Kwon
{"title":"Recombinant protein embedded liposome on gold nanoparticle based on LSPR method to detect Corona virus","authors":"Lina Kim, Seongjae Jo, Gyeong-Ji Kim, Kyung Ho Kim, Sung Eun Seo, Eunsu Ryu, Chan Jae Shin, Yu Kyung Kim, Jeong-Woo Choi, Oh Seok Kwon","doi":"10.1186/s40580-023-00399-x","DOIUrl":"10.1186/s40580-023-00399-x","url":null,"abstract":"<div><p>Antibody sensor to detect viruses has been widely used but has problems such as the difficulty of right direction control of the receptor site on solid substrate, and long time and high cost for design and production of antibodies to new emerging viruses. The virus detection sensor with a recombinant protein embedded liposome (R/Li) was newly developed to solve the above problems, in which R/Li was assembled on AuNPs (Au@R/Li) to increase the sensitivity using localized surface plasmon resonance (LSPR) method. Recombinant angiotensin-converting enzyme-2 (ACE2) was used as host receptors of SARS-CoV and SARS-CoV-2, and the direction of enzyme active site for virus attachment could be controlled by the integration with liposome. The recombinant protein embedded liposomes were assembled on AuNPs, and LSPR method was used for detection. With the sensor platform S1 protein of both viruses was detected with detection limit of 10 pg/ml and SARS-CoV-2 in clinical samples was detected with 10 ~ 35 Ct values. In the selectivity test, MERS-CoV did not show a signal due to no binding with Au@R/Li. The proposed sensor platform can be used as promising detection method with high sensitivity and selectivity for the early and simple diagnosis of new emerging viruses.</p><h3>Graphical Abstract</h3>\u0000 <div><figure><div><div><picture><source><img></source></picture></div></div></figure></div>\u0000 </div>","PeriodicalId":712,"journal":{"name":"Nano Convergence","volume":"10 1","pages":""},"PeriodicalIF":11.7,"publicationDate":"2023-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10615991/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71410115","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nano ConvergencePub Date : 2023-10-28DOI: 10.1186/s40580-023-00397-z
Jingyeong Jeon, Youngkyoung Ha, Judith L. MacManus-Driscoll, Shinbuhm Lee
{"title":"La-doped BaSnO3 for electromagnetic shielding transparent conductors","authors":"Jingyeong Jeon, Youngkyoung Ha, Judith L. MacManus-Driscoll, Shinbuhm Lee","doi":"10.1186/s40580-023-00397-z","DOIUrl":"10.1186/s40580-023-00397-z","url":null,"abstract":"<div><p>In this work, we find that La-doped BaSnO<sub>3</sub> (BLSO) is shown to be a promising electromagnetic shielding transparent conductor. While films grown on industrially practical optoelectronic MgAl<sub>2</sub>O<sub>4</sub> substrates have higher sheet resistance by three orders of magnitude than in previous reports, we show how to recover the sheet resistance close to the single-crystal level by use of an MgO template layer which enables high quality (001)-oriented BLSO epitaxial film growth on (001) MgAl<sub>2</sub>O<sub>4</sub>. There is a positive correlation between crystallinity and conductivity; high crystallinity minimizes scattering of free electrons. By applying this design principle to 5–20% doped films, we find that highly crystalline 5% La-doped BLSO films exhibit low sheet resistance of ~ 8.7 Ω ▯ <sup>−1</sup>, high visible transmittance of ~ 80%, and high X-band electromagnetic shielding effectiveness of ~ 25.9 dB, thus outperforming transparent conducting oxides films of Sn-doped In<sub>2</sub>O<sub>3</sub> and SrMoO<sub>3</sub>.</p><h3>Graphical Abstract</h3>\u0000 <div><figure><div><div><picture><source><img></source></picture></div></div></figure></div>\u0000 </div>","PeriodicalId":712,"journal":{"name":"Nano Convergence","volume":"10 1","pages":""},"PeriodicalIF":11.7,"publicationDate":"2023-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10613181/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"66783478","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nano ConvergencePub Date : 2023-10-21DOI: 10.1186/s40580-023-00396-0
Jongho Ji, Hoe-Min Kwak, Jimyeong Yu, Sangwoo Park, Jeong-Hwan Park, Hyunsoo Kim, Seokgi Kim, Sungkyu Kim, Dong-Seon Lee, Hyun S. Kum
{"title":"Correction: Understanding the 2D-material and substrate interaction during epitaxial growth towards successful remote epitaxy: a review","authors":"Jongho Ji, Hoe-Min Kwak, Jimyeong Yu, Sangwoo Park, Jeong-Hwan Park, Hyunsoo Kim, Seokgi Kim, Sungkyu Kim, Dong-Seon Lee, Hyun S. Kum","doi":"10.1186/s40580-023-00396-0","DOIUrl":"10.1186/s40580-023-00396-0","url":null,"abstract":"","PeriodicalId":712,"journal":{"name":"Nano Convergence","volume":"10 1","pages":""},"PeriodicalIF":11.7,"publicationDate":"2023-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10590333/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49673033","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nano ConvergencePub Date : 2023-10-21DOI: 10.1186/s40580-023-00398-y
Seokgyu Han, Sebastián Herrera Cruz, Sungsu Park, Su Ryon Shin
{"title":"Nano-biomaterials and advanced fabrication techniques for engineering skeletal muscle tissue constructs in regenerative medicine","authors":"Seokgyu Han, Sebastián Herrera Cruz, Sungsu Park, Su Ryon Shin","doi":"10.1186/s40580-023-00398-y","DOIUrl":"10.1186/s40580-023-00398-y","url":null,"abstract":"<div><p>Engineered three-dimensional (3D) tissue constructs have emerged as a promising solution for regenerating damaged muscle tissue resulting from traumatic or surgical events. 3D architecture and function of the muscle tissue constructs can be customized by selecting types of biomaterials and cells that can be engineered with desired shapes and sizes through various nano- and micro-fabrication techniques. Despite significant progress in this field, further research is needed to improve, in terms of biomaterials properties and fabrication techniques, the resemblance of function and complex architecture of engineered constructs to native muscle tissues, potentially enhancing muscle tissue regeneration and restoring muscle function. In this review, we discuss the latest trends in using nano-biomaterials and advanced nano-/micro-fabrication techniques for creating 3D muscle tissue constructs and their regeneration ability. Current challenges and potential solutions are highlighted, and we discuss the implications and opportunities of a future perspective in the field, including the possibility for creating personalized and biomanufacturable platforms.</p></div>","PeriodicalId":712,"journal":{"name":"Nano Convergence","volume":"10 1","pages":""},"PeriodicalIF":11.7,"publicationDate":"2023-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10590364/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49673034","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nano ConvergencePub Date : 2023-10-13DOI: 10.1186/s40580-023-00395-1
Khan Lê, Niusha Heshmati, Sanjay Mathur
{"title":"Potential and perspectives of halide perovskites in light emitting devices","authors":"Khan Lê, Niusha Heshmati, Sanjay Mathur","doi":"10.1186/s40580-023-00395-1","DOIUrl":"10.1186/s40580-023-00395-1","url":null,"abstract":"<div><p>Light emitting diodes (LEDs) have become part of numerous electrical and electronic systems such as lighting, displays, status indicator lamps and wearable electronics. Owing to their excellent optoelectronic properties and deposition via simple solution process, metal halide perovskites possess unique potential for developing halide perovskite-based LEDs (PeLEDs) with superior photoluminescence efficiencies leading to external quantum efficiencies beyond 20% for PeLEDS. However, the limited durability, high operative voltages, and challenges of scale-up are persisting barriers in achieving required technology readiness levels. To build up the existing knowledge and raise the device performance this review provides a state-of-the-art study on the properties, film and device fabrication, efficiency, and stability of PeLEDs. In terms of commercialization, PeLEDs need to overcome materials and device challenges including stability, ion migration, phase segregation, and joule heating, which are discussed in this review. We hope, discussions about the strategies to overcome the stability issues and enhancement the materials intrinsic properties towards development more stable and efficient optoelectronic devices can pave the way for scalability and cost-effective production of PeLEDs.</p><h3>Graphical Abstract</h3>\u0000 <div><figure><div><div><picture><source><img></source></picture></div></div></figure></div>\u0000 </div>","PeriodicalId":712,"journal":{"name":"Nano Convergence","volume":"10 1","pages":""},"PeriodicalIF":11.7,"publicationDate":"2023-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10575846/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41187766","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nano ConvergencePub Date : 2023-09-16DOI: 10.1186/s40580-023-00393-3
Joochan Kim, Jaehyung Jeon, Hyowon Jang, Youngkwang Moon, Abdurhaman Teyib Abafogi, Danny van Noort, Jinkee Lee, Taejoon Kang, Sungsu Park
{"title":"3D printed fluidic swab for COVID-19 testing with improved diagnostic yield and user comfort","authors":"Joochan Kim, Jaehyung Jeon, Hyowon Jang, Youngkwang Moon, Abdurhaman Teyib Abafogi, Danny van Noort, Jinkee Lee, Taejoon Kang, Sungsu Park","doi":"10.1186/s40580-023-00393-3","DOIUrl":"10.1186/s40580-023-00393-3","url":null,"abstract":"<div><p>The current standard method of diagnosing coronavirus disease 2019 (COVID-19) involves uncomfortable and invasive nasopharyngeal (NP) sampling using cotton swabs (CS), which can be unsuitable for self-testing. Although mid-turbinate sampling is an alternative, it has a lower diagnostic yield than NP sampling. Nasal wash (NW) has a similar diagnostic yield to NP sampling, but is cumbersome to perform. In this study, we introduce a 3D printed fluidic swab (3DPFS) that enables easy NW sampling for COVID-19 testing with improved diagnostic yield. The 3DPFS comprises a swab head, microchannel, and socket that can be connected to a syringe containing 250 µL of NW solution. The 3DPFS efficiently collects nasal fluid from the surface of the nasal cavity, resulting in higher sensitivity than CS for the detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). This was confirmed by both reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and lateral flow assays (LFA) in virus-spiked nasal samples and clinical samples. Additionally, users reported greater comfort when using the 3DPFS compared to CS. These findings suggest that the 3DPFS can improve the performance of COVID-19 testing by facilitating efficient and less painful nasal sample collection.</p></div>","PeriodicalId":712,"journal":{"name":"Nano Convergence","volume":"10 1","pages":""},"PeriodicalIF":11.7,"publicationDate":"2023-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10505115/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10359322","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nano ConvergencePub Date : 2023-09-14DOI: 10.1186/s40580-023-00392-4
Markus Hellenbrand, Judith MacManus-Driscoll
{"title":"Multi-level resistive switching in hafnium-oxide-based devices for neuromorphic computing","authors":"Markus Hellenbrand, Judith MacManus-Driscoll","doi":"10.1186/s40580-023-00392-4","DOIUrl":"10.1186/s40580-023-00392-4","url":null,"abstract":"<div><p>In the growing area of neuromorphic and in-memory computing, there are multiple reviews available. Most of them cover a broad range of topics, which naturally comes at the cost of details in specific areas. Here, we address the specific area of multi-level resistive switching in hafnium-oxide-based devices for neuromorphic applications and summarize the progress of the most recent years. While the general approach of resistive switching based on hafnium oxide thin films has been very busy over the last decade or so, the development of hafnium oxide with a continuous range of programmable states per device is still at a very early stage and demonstrations are mostly at the level of individual devices with limited data provided. On the other hand, it is positive that there are a few demonstrations of full network implementations. We summarize the general status of the field, point out open questions, and provide recommendations for future work.</p></div>","PeriodicalId":712,"journal":{"name":"Nano Convergence","volume":"10 1","pages":""},"PeriodicalIF":11.7,"publicationDate":"2023-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10501996/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10267588","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}