Mussel-inspired resilient hydrogels with strong skin adhesion and high-sensitivity for wearable device

IF 13.4 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Stalin Kondaveeti, Geonjun Choi, Sarath Chandra Veerla, Somi Kim, Jaeil Kim, Hee Jin Lee, Unnikrishnan Kuzhiumparambil, Peter J. Ralph, Junyeob Yeo, Hoon Eui Jeong
{"title":"Mussel-inspired resilient hydrogels with strong skin adhesion and high-sensitivity for wearable device","authors":"Stalin Kondaveeti,&nbsp;Geonjun Choi,&nbsp;Sarath Chandra Veerla,&nbsp;Somi Kim,&nbsp;Jaeil Kim,&nbsp;Hee Jin Lee,&nbsp;Unnikrishnan Kuzhiumparambil,&nbsp;Peter J. Ralph,&nbsp;Junyeob Yeo,&nbsp;Hoon Eui Jeong","doi":"10.1186/s40580-024-00419-4","DOIUrl":null,"url":null,"abstract":"<div><p>Stretchable and self-adhesive conductive hydrogels hold significant importance across a wide spectrum of applications, including human–machine interfaces, wearable devices, and soft robotics. However, integrating multiple properties, such as high stretchability, strong interfacial adhesion, self-healing capability, and sensitivity, into a single material poses significant technical challenges. Herein, we present a multifunctional conductive hydrogel based on poly(acrylic acid) (PAA), dopamine-functionalized pectin (PT-DA), polydopamine-coated reduction graphene oxide (rGO-PDA), and Fe<sup>3+</sup> as an ionic cross-linker. This hydrogel exhibits a combination of high stretchability (2000%), rapid self-healing (~ 94% recovery in 5 s), and robust self-adhesion to various substrates. Notably, the hydrogel demonstrates a remarkable skin adhesion strength of 85 kPa, surpassing previous skin adhesive hydrogels. Furthermore, incorporating rGO within the hydrogel network creates electric pathways, ensuring excellent conductivity (0.56 S m<sup>–1</sup>). Consequently, these conductive hydrogels exhibit strain-sensing properties with a significant increase in gauge factor (GF) of 14.6, covering an extensive detection range of ~ 1000%, fast response (198 ms) and exceptional cycle stability. These multifunctional hydrogels can be seamlessly integrated into motion detection sensors capable of distinguishing between various strong or subtle movements of the human body.</p></div>","PeriodicalId":712,"journal":{"name":"Nano Convergence","volume":"11 1","pages":""},"PeriodicalIF":13.4000,"publicationDate":"2024-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://nanoconvergencejournal.springeropen.com/counter/pdf/10.1186/s40580-024-00419-4","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Convergence","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1186/s40580-024-00419-4","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Stretchable and self-adhesive conductive hydrogels hold significant importance across a wide spectrum of applications, including human–machine interfaces, wearable devices, and soft robotics. However, integrating multiple properties, such as high stretchability, strong interfacial adhesion, self-healing capability, and sensitivity, into a single material poses significant technical challenges. Herein, we present a multifunctional conductive hydrogel based on poly(acrylic acid) (PAA), dopamine-functionalized pectin (PT-DA), polydopamine-coated reduction graphene oxide (rGO-PDA), and Fe3+ as an ionic cross-linker. This hydrogel exhibits a combination of high stretchability (2000%), rapid self-healing (~ 94% recovery in 5 s), and robust self-adhesion to various substrates. Notably, the hydrogel demonstrates a remarkable skin adhesion strength of 85 kPa, surpassing previous skin adhesive hydrogels. Furthermore, incorporating rGO within the hydrogel network creates electric pathways, ensuring excellent conductivity (0.56 S m–1). Consequently, these conductive hydrogels exhibit strain-sensing properties with a significant increase in gauge factor (GF) of 14.6, covering an extensive detection range of ~ 1000%, fast response (198 ms) and exceptional cycle stability. These multifunctional hydrogels can be seamlessly integrated into motion detection sensors capable of distinguishing between various strong or subtle movements of the human body.

由贻贝启发的弹性水凝胶具有强大的皮肤粘附力和高灵敏度,可用于可穿戴设备。
可拉伸和自粘性导电水凝胶在人机界面、可穿戴设备和软机器人等广泛应用中具有重要意义。然而,将高拉伸性、强界面粘附性、自愈合能力和灵敏度等多种特性整合到单一材料中,是一项重大的技术挑战。在本文中,我们介绍了一种多功能导电水凝胶,它基于聚丙烯酸(PAA)、多巴胺功能化果胶(PT-DA)、聚多巴胺包覆还原氧化石墨烯(rGO-PDA)和离子交联剂 Fe3+。这种水凝胶兼具高拉伸性(2000%)、快速自愈合(5 秒内恢复约 94%)以及对各种基底的强大自粘性。值得注意的是,这种水凝胶的皮肤粘附强度高达 85 kPa,超过了以往的皮肤粘附水凝胶。此外,在水凝胶网络中加入 rGO 还能形成电通路,确保出色的导电性(0.56 S m-1)。因此,这些导电水凝胶具有应变传感特性,表征因子(GF)显著提高到 14.6,检测范围达到约 1000%,响应速度快(198 毫秒),周期稳定性极佳。这些多功能水凝胶可无缝集成到运动检测传感器中,能够区分人体的各种强烈或细微运动。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nano Convergence
Nano Convergence Engineering-General Engineering
CiteScore
15.90
自引率
2.60%
发文量
50
审稿时长
13 weeks
期刊介绍: Nano Convergence is an internationally recognized, peer-reviewed, and interdisciplinary journal designed to foster effective communication among scientists spanning diverse research areas closely aligned with nanoscience and nanotechnology. Dedicated to encouraging the convergence of technologies across the nano- to microscopic scale, the journal aims to unveil novel scientific domains and cultivate fresh research prospects. Operating on a single-blind peer-review system, Nano Convergence ensures transparency in the review process, with reviewers cognizant of authors' names and affiliations while maintaining anonymity in the feedback provided to authors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信