Seyed Mehdi Sattari-Esfahlan, Saeed Mirzaei, Mukkath Joseph Josline, Ji-Yun Moon, Sang-Hwa Hyun, Houk Jang, Jae-Hyun Lee
{"title":"非晶态氮化硼:合成、性能及器件应用","authors":"Seyed Mehdi Sattari-Esfahlan, Saeed Mirzaei, Mukkath Joseph Josline, Ji-Yun Moon, Sang-Hwa Hyun, Houk Jang, Jae-Hyun Lee","doi":"10.1186/s40580-025-00486-1","DOIUrl":null,"url":null,"abstract":"<div><p>Amorphous boron nitride (a-BN) exhibits remarkable electrical, optical, and chemical properties, alongside robust mechanical stability, making it a compelling material for advanced applications in nanoelectronics and photonics. This review comprehensively examines the unique characteristics of a-BN, emphasizing its electrical and optical attributes, state-of-the-art synthesis techniques, and device applications. Key advancements in low-temperature growth methods for a-BN are highlighted, offering insights into their potential for integration into scalable, CMOS-compatible platforms. Additionally, the review discusses the emerging role of a-BN as a dielectric material in electronic and photonic devices, serving as substrates, encapsulation layers, and gate insulators. Finally, perspectives on future challenges, including defect control, interface engineering, and scalability, are presented, providing a roadmap for realizing the full potential of a-BN in next-generation device technologies.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":712,"journal":{"name":"Nano Convergence","volume":"12 1","pages":""},"PeriodicalIF":13.4000,"publicationDate":"2025-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://nanoconvergencejournal.springeropen.com/counter/pdf/10.1186/s40580-025-00486-1","citationCount":"0","resultStr":"{\"title\":\"Amorphous boron nitride: synthesis, properties and device application\",\"authors\":\"Seyed Mehdi Sattari-Esfahlan, Saeed Mirzaei, Mukkath Joseph Josline, Ji-Yun Moon, Sang-Hwa Hyun, Houk Jang, Jae-Hyun Lee\",\"doi\":\"10.1186/s40580-025-00486-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Amorphous boron nitride (a-BN) exhibits remarkable electrical, optical, and chemical properties, alongside robust mechanical stability, making it a compelling material for advanced applications in nanoelectronics and photonics. This review comprehensively examines the unique characteristics of a-BN, emphasizing its electrical and optical attributes, state-of-the-art synthesis techniques, and device applications. Key advancements in low-temperature growth methods for a-BN are highlighted, offering insights into their potential for integration into scalable, CMOS-compatible platforms. Additionally, the review discusses the emerging role of a-BN as a dielectric material in electronic and photonic devices, serving as substrates, encapsulation layers, and gate insulators. Finally, perspectives on future challenges, including defect control, interface engineering, and scalability, are presented, providing a roadmap for realizing the full potential of a-BN in next-generation device technologies.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":712,\"journal\":{\"name\":\"Nano Convergence\",\"volume\":\"12 1\",\"pages\":\"\"},\"PeriodicalIF\":13.4000,\"publicationDate\":\"2025-05-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://nanoconvergencejournal.springeropen.com/counter/pdf/10.1186/s40580-025-00486-1\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano Convergence\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1186/s40580-025-00486-1\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Convergence","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1186/s40580-025-00486-1","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Amorphous boron nitride: synthesis, properties and device application
Amorphous boron nitride (a-BN) exhibits remarkable electrical, optical, and chemical properties, alongside robust mechanical stability, making it a compelling material for advanced applications in nanoelectronics and photonics. This review comprehensively examines the unique characteristics of a-BN, emphasizing its electrical and optical attributes, state-of-the-art synthesis techniques, and device applications. Key advancements in low-temperature growth methods for a-BN are highlighted, offering insights into their potential for integration into scalable, CMOS-compatible platforms. Additionally, the review discusses the emerging role of a-BN as a dielectric material in electronic and photonic devices, serving as substrates, encapsulation layers, and gate insulators. Finally, perspectives on future challenges, including defect control, interface engineering, and scalability, are presented, providing a roadmap for realizing the full potential of a-BN in next-generation device technologies.
期刊介绍:
Nano Convergence is an internationally recognized, peer-reviewed, and interdisciplinary journal designed to foster effective communication among scientists spanning diverse research areas closely aligned with nanoscience and nanotechnology. Dedicated to encouraging the convergence of technologies across the nano- to microscopic scale, the journal aims to unveil novel scientific domains and cultivate fresh research prospects.
Operating on a single-blind peer-review system, Nano Convergence ensures transparency in the review process, with reviewers cognizant of authors' names and affiliations while maintaining anonymity in the feedback provided to authors.