Photocatalytic effect of gold-zinc oxide composite nanostructures for the selective and controlled killing of antibiotic-resistant bacteria and the removal of resistant bacterial biofilms from the body
IF 13.4 2区 材料科学Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Jongjun Park, Tae Hui Bae, Su Yong Kim, Seongeun Park, Yonghyun Choi, Masayoshi Tanaka, Jiwon Kim, Jaehee Jang, Jihyuk Yang, Hee-Young Lee, Tagbo H. R. Niepa, Shin Hyuk Kang, Jonghoon Choi
{"title":"Photocatalytic effect of gold-zinc oxide composite nanostructures for the selective and controlled killing of antibiotic-resistant bacteria and the removal of resistant bacterial biofilms from the body","authors":"Jongjun Park, Tae Hui Bae, Su Yong Kim, Seongeun Park, Yonghyun Choi, Masayoshi Tanaka, Jiwon Kim, Jaehee Jang, Jihyuk Yang, Hee-Young Lee, Tagbo H. R. Niepa, Shin Hyuk Kang, Jonghoon Choi","doi":"10.1186/s40580-025-00488-z","DOIUrl":null,"url":null,"abstract":"<div><p>Infections involving antibiotic-resistant bacteria have become a major problem. Pathogenic bacteria use mechanisms such as drug target bypass, target modification, and biofilm formation to evade treatment. To respond to these problems, antibacterial research using metal and metal oxide nanoparticles is currently active. Nanoparticles treat bacterial infections through reactive oxygen species generation or antibacterial ion release. However, their application has faced problems related to human compatibility, as they react non-specifically, targeting both mammalian and bacterial cells. In addition, ZnO nanoparticles show low antibacterial activity against Gram-negative bacteria. Thus, the demand for antibacterial substances with enhanced specificity and improved efficacy is increasing. We bound gold to the surface of ZnO nanoparticles, enabling photocatalytic and photothermal actions through visible light irradiation. To improve bacterial specificity, Concanavalin A (Con A), a lectin that can specifically target bacterial membrane lipopolysaccharides, was conjugated with the nanoparticles. We showed that Con A-conjugated Au/ZnO nanoparticles (Au/ZnO-Con A) exhibit photocatalytic and photothermal effects under white light, enhancing their antibacterial ability, and through enhanced specificity, increased antibacterial and anti-biofilm abilities were confirmed. The developed particles showed the potential to alleviate antibiotic resistance in a bacterial skin infection model, presenting a new platform for treating bacterial infections.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":712,"journal":{"name":"Nano Convergence","volume":"12 1","pages":""},"PeriodicalIF":13.4000,"publicationDate":"2025-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://nanoconvergencejournal.springeropen.com/counter/pdf/10.1186/s40580-025-00488-z","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Convergence","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1186/s40580-025-00488-z","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Infections involving antibiotic-resistant bacteria have become a major problem. Pathogenic bacteria use mechanisms such as drug target bypass, target modification, and biofilm formation to evade treatment. To respond to these problems, antibacterial research using metal and metal oxide nanoparticles is currently active. Nanoparticles treat bacterial infections through reactive oxygen species generation or antibacterial ion release. However, their application has faced problems related to human compatibility, as they react non-specifically, targeting both mammalian and bacterial cells. In addition, ZnO nanoparticles show low antibacterial activity against Gram-negative bacteria. Thus, the demand for antibacterial substances with enhanced specificity and improved efficacy is increasing. We bound gold to the surface of ZnO nanoparticles, enabling photocatalytic and photothermal actions through visible light irradiation. To improve bacterial specificity, Concanavalin A (Con A), a lectin that can specifically target bacterial membrane lipopolysaccharides, was conjugated with the nanoparticles. We showed that Con A-conjugated Au/ZnO nanoparticles (Au/ZnO-Con A) exhibit photocatalytic and photothermal effects under white light, enhancing their antibacterial ability, and through enhanced specificity, increased antibacterial and anti-biofilm abilities were confirmed. The developed particles showed the potential to alleviate antibiotic resistance in a bacterial skin infection model, presenting a new platform for treating bacterial infections.
期刊介绍:
Nano Convergence is an internationally recognized, peer-reviewed, and interdisciplinary journal designed to foster effective communication among scientists spanning diverse research areas closely aligned with nanoscience and nanotechnology. Dedicated to encouraging the convergence of technologies across the nano- to microscopic scale, the journal aims to unveil novel scientific domains and cultivate fresh research prospects.
Operating on a single-blind peer-review system, Nano Convergence ensures transparency in the review process, with reviewers cognizant of authors' names and affiliations while maintaining anonymity in the feedback provided to authors.