M. Sarmast Sh, A. B. Dayang Radiah, D. A. Hoey, N. Abdullah, H. S. Zainuddin, S. Kamarudin
{"title":"The structural, mechanical, and biological variation of silica bioglasses obtained by different sintering temperatures","authors":"M. Sarmast Sh, A. B. Dayang Radiah, D. A. Hoey, N. Abdullah, H. S. Zainuddin, S. Kamarudin","doi":"10.1007/s10971-024-06480-z","DOIUrl":"10.1007/s10971-024-06480-z","url":null,"abstract":"<div><p>The challenges of forming a crystalline phase within 45S5 Bioglass<sup>®</sup> (45% SiO<sub>2</sub>-24.5% CaO-24.5% Na<sub>2</sub>O-6% P<sub>2</sub>O<sub>5</sub> mol%) and its subsequent influence on the bioactivity of the bioglass were studied in this research. Bioglasses were sintered at 1400, 750, and 550 °C, using both melting and sol-gel methods. The different responses of bioglasses to different sintering temperatures were revealed. Particularly, increased crystallinity was observed in sol-gel-derived bioglass sintered at 750 °C, indicating a denser and more ordered structure. This crystalline architecture facilitated enhanced bioactivity, as demonstrated by increased hydroxyapatite deposition when immersed in simulated body fluid (SBF). Furthermore, superior mechanical properties and biocompatibility were achieved with this temperature regime, making it a prime candidate for bone regeneration applications. The bioglass sintered at 750 °C exhibited an accelerated degradation rate associated with its porosity, potentially contributing to faster material resorption in vivo. Its antibacterial efficacy against <i>E. coli</i> and <i>S. aureus</i> was also noted, and in vitro studies with MTT assay confirmed that the optimized sol-gel bioglass meets biocompatibility standards. These findings highlight the potential of fine-tuning the sintering temperature to modulate the crystallinity of bioglasses, thereby enhancing their application scope in bone tissue engineering.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":664,"journal":{"name":"Journal of Sol-Gel Science and Technology","volume":"112 1","pages":"289 - 310"},"PeriodicalIF":2.3,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142195932","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Giuseppe Angellotti, Cristina Riccucci, Gabriella Di Carlo, Mario Pagliaro, Rosaria Ciriminna
{"title":"Towards sustainable pest management of broad scope: sol-gel microencapsulation of Origanum vulgare essential oil","authors":"Giuseppe Angellotti, Cristina Riccucci, Gabriella Di Carlo, Mario Pagliaro, Rosaria Ciriminna","doi":"10.1007/s10971-024-06512-8","DOIUrl":"10.1007/s10971-024-06512-8","url":null,"abstract":"<div><p>Showing broad scope pesticidal properties, the <i>Origanum vulgare</i> essential oil is highly volatile, limiting effective agricultural applications. Aiming to develop new environmentally friendly and effective biopesticide based on <i>O. vulgare</i> essential oil we carried out its template-assisted sol-gel microencapsulation within silica microcapsules. The method affords mesoporous SiO<sub>2</sub> spherical particles about 430 nm in size with uniform size distribution (polydispersion index of 0.184) having encapsulation efficiency up to 13.7 wt%, and large positive zeta potential of 22.8 mV. Dubbed herein “SiliOregan”, this new class of sol-gel materials is promising towards the development of solid biopesticides formulated in water for pest management against fungi, insects, bacteria, nematodes, and mites.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":664,"journal":{"name":"Journal of Sol-Gel Science and Technology","volume":"112 1","pages":"230 - 239"},"PeriodicalIF":2.3,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10971-024-06512-8.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142225054","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Fouad El Aychaoui, Abdelhalim El Basset, Mohamed Naji, Mohammed Bouzid, Abdelilah Rjeb, Lahoucine Hajji, Yahya Ababou
{"title":"Structural and enhanced dielectric properties of Li-doped BT elaborated by the sol-gel method","authors":"Fouad El Aychaoui, Abdelhalim El Basset, Mohamed Naji, Mohammed Bouzid, Abdelilah Rjeb, Lahoucine Hajji, Yahya Ababou","doi":"10.1007/s10971-024-06525-3","DOIUrl":"10.1007/s10971-024-06525-3","url":null,"abstract":"<div><p>In this paper, we studied the effect of lithium doping on the structural, microstructural, dielectric, and electrical properties of Ba<sub>1-x</sub>Li<sub>x</sub>TiO<sub>3-δ</sub> (BTLx) ceramics prepared via the sol-gel method, with x = 0, 0.01, 0.03, 0.05, 0.07 and 0.09. The results obtained from Rietveld refinement of X-ray diffraction, infrared spectroscopy, and Raman spectroscopy show that all the samples crystallize in the tetragonal phase. Dielectric measurements show that increasing the lithium doping rate results in lower dielectric losses (from 0.04 for x = 0 to 0.008 for x = 0.09 at room temperature) and lower transition temperature Tm for compositions with x ≤ 0.07. The phase transition diffusivity parameter γ varies between 1 and 1.39, showing that our samples exhibit a diffuse phase transition but far from relaxor behavior. Complex impedance spectroscopy indicates that the grain boundary resistance of the materials is predominant in the electrical behavior of the materials. The activation energy Ea was calculated at 10 kHz by linear fitting of the temperature dependence of conductivity using the Arrhenius formula. The obtained values indicate that conduction for compositions with 0 ≤ x ≤ 0.05 occurs through free electrons originating from the ionization of oxygen vacancies, while for the compositions with x = 0.07 and 0.09, the predominant conduction mechanism is ionic conduction.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":664,"journal":{"name":"Journal of Sol-Gel Science and Technology","volume":"112 1","pages":"182 - 201"},"PeriodicalIF":2.3,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142195933","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Monolithic poly(methylsilsesquioxane) aerogels with glasslike transparency: from sol-gel synthesis to ambient pressure drying","authors":"Riichi Miyamoto, Ryota Ueoka, Koichiro Tachibana, Ayaka Maeno, Hironori Kaji, Kazuyoshi Kanamori","doi":"10.1007/s10971-024-06528-0","DOIUrl":"10.1007/s10971-024-06528-0","url":null,"abstract":"<div><p>Practical aspects of the successful preparation of monolithic poly(methylsilsesquioxane) (PMSQ) aerogels with glasslike transparency via ambient pressure drying (APD) are discussed in detail. Two-step acid-base process starting from methyltrimethoxysilane (MTMS) in the presence of nonionic poly(ethylene oxide)-<i>block</i>-poly(propylene oxide)-<i>block</i>-poly(ethylene oxide) surfactant and the use of strong base as polycondensation catalyst resulted in fine mesoporous structure, showing low bulk density (0.148 g cm<sup>−3</sup>) and glasslike transparency (95% at 10 mm thickness). Cracking and irreversible shrinkage during APD have been prevented by optimized aging and drying processes. In particular, aging in an aqueous alcohol solution containing a low concentration of MTMS under controlled temperature has been found to be crucial in obtaining PMSQ aerogels with crack-free, low-density, glasslike transparency, and monolithic nature. A large-area APD aerogel in 93 × 93 × 6 mm<sup>3</sup>, with thermal conductivity of 15.6 mW m<sup>−1</sup> K<sup>−1</sup>, has successfully been obtained due to optimizations of aging and drying conditions. Similar APD aerogels have also been obtained when alkali metal hydroxides, especially lithium hydroxide, are employed as base catalysts. These findings are expected to play important roles in designing industrial productions of monolithic aerogels for thermal superinsulation and other applications.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":664,"journal":{"name":"Journal of Sol-Gel Science and Technology","volume":"112 1","pages":"202 - 215"},"PeriodicalIF":2.3,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142196037","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Formation of interfaces responsive and adaptive to environment via the sol-gel method","authors":"Masahide Takahashi, Kenji Okada, Luca Malfatti, Plinio Innocenzi","doi":"10.1007/s10971-024-06522-6","DOIUrl":"10.1007/s10971-024-06522-6","url":null,"abstract":"<p>Smart devices, such as soft robots, artificial organs, and soft actuators, require materials that adapt their morphologies and properties in response to their environment. These materials can be obtained through the composition of different types of materials that exhibit different responses to environmental stimuli, arranged in a rational spatial configuration. We achieved unique responsive materials by forming interfaces and surfaces of appropriate materials using the sol–gel method. In recent decades, we have proposed the use of wrinkles and nano-brushes on sol–gel-derived materials for various sophisticated applications, such as micropattern fabrication, wettability control, and linear actuators for size-selective transportation. This account introduces environment-responsive materials with rational interfaces via the sol–gel method, particularly those characterized by surface morphology.</p>","PeriodicalId":664,"journal":{"name":"Journal of Sol-Gel Science and Technology","volume":"112 1","pages":"174 - 181"},"PeriodicalIF":2.3,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10971-024-06522-6.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142195972","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
N. Khima, A. Chelouche, F. Challali, D. Djouadi, A. Djermoune, M. Luce, A. Cricenti, D. Becerril, S. Bellucci, T. Touam
{"title":"TiO2 sol–gel thin films: effect of acidic and basic pH on physical characteristics","authors":"N. Khima, A. Chelouche, F. Challali, D. Djouadi, A. Djermoune, M. Luce, A. Cricenti, D. Becerril, S. Bellucci, T. Touam","doi":"10.1007/s10971-024-06519-1","DOIUrl":"10.1007/s10971-024-06519-1","url":null,"abstract":"<div><p>The present study examines the impact of acidic and basic pH on the optical, morphological, and structural characteristics of TiO<sub>2</sub> sol–gel thin films that are deposited using the dip-coating technique on glass substrates. All of the samples are polycrystalline and have anatase structures with preference orientation along the (101) direction, according to X-ray diffraction (XRD) and Raman spectroscopy (RS). It is observed that, for both basic and acidic pH values, crystallite size decreases as sol pH rises. All of the films’ surfaces were smooth and had a uniform grain distribution, according to atomic force microscopy (AFM). The pH of the sol has an impact on the surface roughness. All films had a higher degree of transparency, according to UV-visible spectroscopy. The refractive index and the direct and indirect band gaps are two essential optical properties of thin films that are significantly influenced by the pH of the deposition medium. Measurements of photoluminescence (PL) showed a strong violet-blue emission band, the intensity of which is highly dependent on the sol’s pH. In acidic media, PL decreases with increasing pH. However, in a basic environment, the PL rises sharply as the pH increases from 10 to 11 and then decreases for higher pH values. In particular, compared to the other samples, the emission intensity from the film deposited at a pH value of 10 is noticeably lower and displays unique spectral signatures.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":664,"journal":{"name":"Journal of Sol-Gel Science and Technology","volume":"112 1","pages":"277 - 288"},"PeriodicalIF":2.3,"publicationDate":"2024-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142195973","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mohamed Hsini, T. Raoufi, M. H. Ehsani, Manel Essid, Nuha Al-Harbi, B. M. Alotaibi, Hayfa A. Alyousef
{"title":"Predicting the magnetocaloric properties in Gd ion substitution on La0.6-xGdxSr0.4MnO3 (x = 0, 0.0125, 0.05, and 0.10) manganites synthesized via the sol-gel method","authors":"Mohamed Hsini, T. Raoufi, M. H. Ehsani, Manel Essid, Nuha Al-Harbi, B. M. Alotaibi, Hayfa A. Alyousef","doi":"10.1007/s10971-024-06511-9","DOIUrl":"10.1007/s10971-024-06511-9","url":null,"abstract":"<div><p>This study investigates the critical behavior analysis and predicting magnetocaloric properties of La<sub>0.6-x</sub>Gd<sub>x</sub>Sr<sub>0.4</sub>MnO<sub>3</sub> manganites, focusing on the impact of varying gadolinium (Gd) doping levels (x = 0, 0.0125, 0.05, and 0.10). Using modified Arrott plots (MAPs) and the Kouvel–Fisher method, the critical exponents γ and β were determined, yielding values that indicate how Gd content influences magnetic phase transitions. Additionally, the magnetocaloric effect (MCE) was analyzed to assess the magnetic entropy change <span>(-Delta {{rm{S}}}_{{rm{M}}}({rm{T}}))</span> and the Temperature-Averaged Entropy Change <span>(({TEC}))</span> across different magnetic field changes. The results show that increasing Gd doping enhances the magnetocaloric response, suggesting potential applications in magnetic refrigeration. Overall, the study provides insights into optimizing these manganites for applications in high-temperature sensors, spintronics, and magnetic cooling.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div><div><p>Predicting of <span>(-Delta {{rm{S}}}_{{rm{M}}}({rm{T}}))</span> curves (solid lines) under various magnetic fields. The experimental results are presented with symbols for the La<sub>0.6-x</sub>Gd<sub>x</sub>Sr<sub>0.4</sub>MnO<sub>3</sub> manganites (x = 0, 0.0125, 0.05, 0.10) indicated by G0, G1, G2 and G3, respectively.</p></div></div></figure></div></div>","PeriodicalId":664,"journal":{"name":"Journal of Sol-Gel Science and Technology","volume":"112 1","pages":"162 - 173"},"PeriodicalIF":2.3,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142195975","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Synthesis of amorphous CoSn(OH)6 nanocubes for photocatalytic reduction of 4-nitrophenol","authors":"Enlei Zhang, Jiaojiao Chen, Rui Xu, Xiaowen Song, Bengui Zhang, Guosheng Wang","doi":"10.1007/s10971-024-06508-4","DOIUrl":"10.1007/s10971-024-06508-4","url":null,"abstract":"<div><p>Catalytic reduction of 4-nitrophenol (4-NP) into 4-aminophenol (4-AP) is an important method for treating toxic nitroaromatic pollutant. In this work, amorphous CoSn(OH)<sub>6</sub> nanocubes were synthesized by coprecipitation and calcination methods for 4-NP photocatalytic reduction. The crystal structure, morphology and optical property of the samples were characterized by XRD, SEM, TEM, XPS, and UV–vis DRS. The amorphous CoSn(OH)<sub>6</sub> nanocubes showed excellent photocatalytic performance in 4-NP reduction. The effects of catalyst dosage, 4-NP concentration, and sodium borohydride concentration on the conversion rate of 4-NP were investigated. The results showed that the conversion rate of 4-NP could reach 98.38% in 15 min at room temperature under visible light irradiation. After five cycles of experiments, the conversion rate of 4-NP remained above 90%, indicating the good catalytic stability of the amorphous CoSn(OH)<sub>6</sub> nanocubes. Finally, the mechanisms of photocatalytic reduction on amorphous CoSn(OH)<sub>6</sub> nanocubes are also discussed. The successful preparation of amorphous CoSn(OH)<sub>6</sub> nanocubes may enable the widespread use of amorphous polymetallic oxides for the removal of nitrophenols from wastewater in the future.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div><div><p>Amorphous CoSn(OH)<sub>6</sub> nanocubes exhibit superior photocatalytic reduction 4-NP to 4-AP performance.</p></div></div></figure></div></div>","PeriodicalId":664,"journal":{"name":"Journal of Sol-Gel Science and Technology","volume":"112 1","pages":"152 - 161"},"PeriodicalIF":2.3,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142195979","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
C. Jayakrishnan, S. R. Sheeja, G. Suresh Kumar, K. Lalithambigai, J. Duraimurugan, Mohammed Mujahid Alam
{"title":"Hydrothermal assisted synthesis of shape-controlled zinc oxide nanostructures for tuneable photodegradation of methylene blue pollutant","authors":"C. Jayakrishnan, S. R. Sheeja, G. Suresh Kumar, K. Lalithambigai, J. Duraimurugan, Mohammed Mujahid Alam","doi":"10.1007/s10971-024-06515-5","DOIUrl":"10.1007/s10971-024-06515-5","url":null,"abstract":"<div><p>In this study, we have investigated the effects of EDTA, citric acid, and urea on the morphology-controlled synthesis of ZnO nanostructures by a hydrothermal method. XRD, FTIR, FESEM, TEM, BET, and UV-DRS studies revealed that the addition of different complexing agents not only controls the size and morphology but also alters the crystallinity, particle size, energy bandgap, specific surface area, and pore characteristics of ZnO. We achieved diverse morphologies, including spherical nanoparticles (80–100 nm), nanorods (1 µm length, 100 nm diameter), and nanoflakes (100–200 nm lateral dimension with 10–20 nm thickness) utilizing citric acid, urea, and EDTA as morphology controllers. The resulting nanoparticles had surface areas of 11.8 m<sup>2</sup>/g, 29.6 m<sup>2</sup>/g, and 4.6 m<sup>2</sup>/g, respectively. ZnO nanostructures developed with citric acid, urea, and EDTA were found to have a band gap of 3.273 eV, 3.209 eV, and 3.380 eV, respectively. The photodegradation efficiency of ZnO spherical nanoparticles, nanorods, and nanoflakes was found to be 90%, 97%, and 81%, respectively, demonstrating the shape-dependent photodegradation of MB dye. The prepared ZnO photocatalyst exhibits pseudo-first-order kinetics with good recyclability (five cycles) and stability. The enhanced photocatalytic performance of ZnO nanorods was attributed to their morphology, which facilitates efficient charge separation and increased surface area, leading to more active sites for pollutant degradation. This study offers a potential approach for developing morphology-driven photocatalysts for environmental remediation and water purification.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":664,"journal":{"name":"Journal of Sol-Gel Science and Technology","volume":"112 1","pages":"262 - 276"},"PeriodicalIF":2.3,"publicationDate":"2024-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142195977","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Matthew D. Femi, Agnes C. Nkele, Michael O. Nwakanma, Adil Alshoaibi, G. H. Jain, S. D. Shinde, B. A. Ezekoye, A. B. C. Ekwealor, S. M. Abhinay, G. E. Patil, Fabian I. Ezema
{"title":"Photocatalytic and gas sensing applications of sol–gel processed GO/(ZnxNi1-x)O ternary composites","authors":"Matthew D. Femi, Agnes C. Nkele, Michael O. Nwakanma, Adil Alshoaibi, G. H. Jain, S. D. Shinde, B. A. Ezekoye, A. B. C. Ekwealor, S. M. Abhinay, G. E. Patil, Fabian I. Ezema","doi":"10.1007/s10971-024-06513-7","DOIUrl":"https://doi.org/10.1007/s10971-024-06513-7","url":null,"abstract":"<p>This research studies the effects of volume ratios on the properties of GO/(Zn<sub>x</sub>Ni<sub>1-x</sub>)O ternary composite prepared by a sol–gel technique. The ratios were produced by keeping the volume of graphene oxide, GO constant whilst varying the volumes of zinc oxide, ZnO, and nickel oxide, NiO to produce the GO/ZnO<sub>0.4</sub>NiO<sub>0.6</sub> and GO/ZnO<sub>0.6</sub>NiO<sub>0.4</sub> nanocomposites. The structural, morphological, elemental, optical, gas sensing and photocatalytic properties of the synthesized nanocomposites have been investigated. EDS results confirmed the presence of graphene oxide, nickel oxide, and zinc oxide in the composite. The band gap energy values for the GOZnO<sub>0.6</sub>NiO<sub>0.4</sub> and GOZnO<sub>0.4</sub>NiO<sub>0.6</sub> composites are 3.0 eV and 3.4 eV, respectively with high absorbance properties. The functional groups and vibrational modes belonging to carbon, oxygen, nickel, zinc were shown in the FT-IR spectra. The gas sensing properties were tested with ethanol and Cl<sub>2</sub> at 100 ppm and 10 V; with the highest sensitivity recorded for Cl<sub>2</sub>. The synthesized ternary composite was highly effective in dye degradation with efficiency of over 85% and high photocatalytic activity performance. Results from the characterization showed potential application of the composites in gas sensing and photocatalytic devices.</p><h3 data-test=\"abstract-sub-heading\">Graphical Abstract</h3>","PeriodicalId":664,"journal":{"name":"Journal of Sol-Gel Science and Technology","volume":"45 1","pages":""},"PeriodicalIF":2.5,"publicationDate":"2024-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142195976","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}