Reduced graphene oxide supported SnMn2O4 spinel for advanced supercapacitor applications

IF 3.2 4区 材料科学 Q2 MATERIALS SCIENCE, CERAMICS
Muhammad Ashan, Gaber A. M. Mersal, Ahmed M. Fallatah, Mohamed M. Ibrahim, Khursheed Ahmad, Zeinhom M. El-Bahy
{"title":"Reduced graphene oxide supported SnMn2O4 spinel for advanced supercapacitor applications","authors":"Muhammad Ashan,&nbsp;Gaber A. M. Mersal,&nbsp;Ahmed M. Fallatah,&nbsp;Mohamed M. Ibrahim,&nbsp;Khursheed Ahmad,&nbsp;Zeinhom M. El-Bahy","doi":"10.1007/s10971-025-06807-4","DOIUrl":null,"url":null,"abstract":"<div><p>This work presents the production and electrochemical characterization of an innovative composite material consisting of spinel (SnMn<sub>2</sub>O<sub>4</sub>) and reduced graphene oxide (rGO), produced for supercapacitor applications. The nanohybrid was synthesized via a straightforward ultrasonication technique, leading to the uniform distribution of SnMn<sub>2</sub>O<sub>4</sub> nanoflakes over rGO sheets. With a notable specific energy (S<sub>E</sub>, 65.90 Wh/kg) and specific power (S<sub>P</sub>, 250 W/kg), as-prepared SnMn<sub>2</sub>O<sub>4</sub>/rGO nanohybrid electrode displayed high specific capacitance (C<sub>s</sub>, 1898 F/g) in 3.0 M KOH at 1 A/g showing superb cycling durability after 5000 cycles than pristine SnMn<sub>2</sub>O<sub>4</sub>. The enhanced electrochemical efficiency of nanohybrid is associated with synergistic effects of the SnMn<sub>2</sub>O<sub>4</sub> and rGO, which provide a substantial area for contact and effective charge transfer pathways. In addition to demonstrating the promising properties of a new SnMn<sub>2</sub>O<sub>4</sub>/rGO material intended for utilization as an electrode in supercapacitors, this study also details a new method for creating inexpensive nanohybrids with exceptional performance, which might be useful in a variety of future applications.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":664,"journal":{"name":"Journal of Sol-Gel Science and Technology","volume":"115 2","pages":"969 - 984"},"PeriodicalIF":3.2000,"publicationDate":"2025-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Sol-Gel Science and Technology","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s10971-025-06807-4","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 0

Abstract

This work presents the production and electrochemical characterization of an innovative composite material consisting of spinel (SnMn2O4) and reduced graphene oxide (rGO), produced for supercapacitor applications. The nanohybrid was synthesized via a straightforward ultrasonication technique, leading to the uniform distribution of SnMn2O4 nanoflakes over rGO sheets. With a notable specific energy (SE, 65.90 Wh/kg) and specific power (SP, 250 W/kg), as-prepared SnMn2O4/rGO nanohybrid electrode displayed high specific capacitance (Cs, 1898 F/g) in 3.0 M KOH at 1 A/g showing superb cycling durability after 5000 cycles than pristine SnMn2O4. The enhanced electrochemical efficiency of nanohybrid is associated with synergistic effects of the SnMn2O4 and rGO, which provide a substantial area for contact and effective charge transfer pathways. In addition to demonstrating the promising properties of a new SnMn2O4/rGO material intended for utilization as an electrode in supercapacitors, this study also details a new method for creating inexpensive nanohybrids with exceptional performance, which might be useful in a variety of future applications.

Graphical Abstract

还原氧化石墨烯支持SnMn2O4尖晶石用于先进的超级电容器应用
这项工作介绍了一种由尖晶石(SnMn2O4)和还原氧化石墨烯(rGO)组成的创新复合材料的生产和电化学表征,该材料用于超级电容器的应用。通过超声波合成纳米杂化物,使SnMn2O4纳米片均匀分布在氧化石墨烯薄片上。制备的SnMn2O4/rGO纳米杂化电极具有显著的比能量(SE, 65.90 Wh/kg)和比功率(SP, 250 W/kg),在3.0 M KOH, 1 a /g下具有较高的比电容(Cs, 1898 F/g),并且在5000次循环后比原始SnMn2O4具有优异的循环耐久性。纳米杂化材料的电化学效率的提高与SnMn2O4和还原氧化石墨烯的协同作用有关,这为接触和有效的电荷转移途径提供了大量的空间。除了展示用于超级电容器电极的新型SnMn2O4/rGO材料的前景外,本研究还详细介绍了一种制造具有优异性能的廉价纳米杂化材料的新方法,这可能在未来的各种应用中都很有用。图形抽象
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Sol-Gel Science and Technology
Journal of Sol-Gel Science and Technology 工程技术-材料科学:硅酸盐
CiteScore
4.70
自引率
4.00%
发文量
280
审稿时长
2.1 months
期刊介绍: The primary objective of the Journal of Sol-Gel Science and Technology (JSST), the official journal of the International Sol-Gel Society, is to provide an international forum for the dissemination of scientific, technological, and general knowledge about materials processed by chemical nanotechnologies known as the "sol-gel" process. The materials of interest include gels, gel-derived glasses, ceramics in form of nano- and micro-powders, bulk, fibres, thin films and coatings as well as more recent materials such as hybrid organic-inorganic materials and composites. Such materials exhibit a wide range of optical, electronic, magnetic, chemical, environmental, and biomedical properties and functionalities. Methods for producing sol-gel-derived materials and the industrial uses of these materials are also of great interest.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信