Journal of Sol-Gel Science and Technology最新文献

筛选
英文 中文
Enhancing glass surface hydrophobicity: the role of Perfluorooctyltriethoxysilane in advanced surface modification 增强玻璃表面的疏水性:全氟辛基三乙氧基硅烷在高级表面改性中的作用
IF 2.3 4区 材料科学
Journal of Sol-Gel Science and Technology Pub Date : 2024-10-19 DOI: 10.1007/s10971-024-06593-5
Hossein Khojasteh, Mohammad-Peyman Mazhari, Kamran Heydaryan, Peyman Aspoukeh, Shahab Ahmadiazar, Samir Mustafa Hamad, Dilshad Shaikhah
{"title":"Enhancing glass surface hydrophobicity: the role of Perfluorooctyltriethoxysilane in advanced surface modification","authors":"Hossein Khojasteh,&nbsp;Mohammad-Peyman Mazhari,&nbsp;Kamran Heydaryan,&nbsp;Peyman Aspoukeh,&nbsp;Shahab Ahmadiazar,&nbsp;Samir Mustafa Hamad,&nbsp;Dilshad Shaikhah","doi":"10.1007/s10971-024-06593-5","DOIUrl":"10.1007/s10971-024-06593-5","url":null,"abstract":"<div><p>This study presents a novel approach to fabricate self-cleaning, superhydrophobic coatings on glass surfaces and photovoltaic cells. Using a cost-effective spray-coating technique, superhydrophobic glass surfaces were developed incorporating modified SiO<sub>2</sub> nanoparticles (NPs), synthesized via a simple sol–gel method. Silylating agents, Poly(dimethylsiloxane) (PDMS) and Perfluorooctyltriethoxysilane (PFOS), were used for the modification, resulting in enhanced surface roughness and hydrophobicity. The study extensively characterizes the analytical techniques such as Fourier transform infrared spectroscopy (FT-IR), atomic force microscopy (AFM), transmission electron microscopy (TEM), scanning electron microscopy (SEM), and contact angle measurements. Modified NPs with PFOS showed a significant improvement in hydrophobic properties, with water contact angles of 144.73° and sliding angles of 5°. The stability of these surfaces under various pH conditions was also evaluated. This research contributes valuable insights into the development of self-cleaning coatings for glass and photovoltaic cells, demonstrating the potential of superhydrophobic surfaces in practical applications.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":664,"journal":{"name":"Journal of Sol-Gel Science and Technology","volume":"112 3","pages":"857 - 869"},"PeriodicalIF":2.3,"publicationDate":"2024-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142636677","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Role of chelating agents on the sol-gel synthesis of bismuth ferrite nanoparticles 螯合剂对溶胶-凝胶法合成铁铋纳米粒子的作用
IF 2.3 4区 材料科学
Journal of Sol-Gel Science and Technology Pub Date : 2024-10-16 DOI: 10.1007/s10971-024-06588-2
Kokkiligadda Jhansi, Parasuraman Swaminathan
{"title":"Role of chelating agents on the sol-gel synthesis of bismuth ferrite nanoparticles","authors":"Kokkiligadda Jhansi,&nbsp;Parasuraman Swaminathan","doi":"10.1007/s10971-024-06588-2","DOIUrl":"10.1007/s10971-024-06588-2","url":null,"abstract":"<div><p>Bismuth ferrite (BiFeO<sub>3</sub>) possesses multifunctional properties pertaining to its unique crystal structure. This study presents a comprehensive investigation on the role of different chelating agents on the low temperature, sol-gel synthesis of bismuth ferrite (BFO) nanoparticles (NPs). The sol-gel process utilizes precursors (iron nitrate and bismuth nitrate), solvent (ethylene glycol), catalyst (nitric acid), and the chelating agent. In this work, different chelating agents, such as acetic acid (AA), citric acid (CA), ethylenediaminetetraacetic acid (EDTA), glycine (GLY), tartaric acid (TA), and urea are evaluated for their influence on the phase purity and morphological features of the synthesized BFO. The NPs are characterized using various techniques such as x-ray diffraction (XRD), scanning electron microscopy (SEM), Brunauer-Emmett-Teller (BET) surface area analysis, UV-Vis-NIR spectroscopy, and vibrating sample magnetometry (VSM). Among all the chelating agents, TA is found to be the most suitable candidate for BFO synthesis. Pure BFO NPs of average crystallite size 20.8 nm, 24.8 m<sup>2</sup>/g surface area, and 1.91 eV optical bandgap are obtained after the calcination of the BFO-TA gel. The results are attributed to the easy gelation capability of TA due to the formation of a well-organized heterometallic polynuclear network during the gelation process. High magnetic saturation of 6.72 emu/g and squareness ratio of 0.26 of BFO-TA NPs implies a weak ferromagnetic nature. These results demonstrate a promising route to synthesize pure BFO, which given its multiferroic nature can be used for many applications.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":664,"journal":{"name":"Journal of Sol-Gel Science and Technology","volume":"112 3","pages":"846 - 856"},"PeriodicalIF":2.3,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142636911","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Structural, electrical, and thermal properties of Ba-substituted B(Pb)SCCO superconductors prepared by sol-gel method 溶胶-凝胶法制备的钡取代B(Pb)SCCO超导体的结构、电学和热学特性
IF 2.3 4区 材料科学
Journal of Sol-Gel Science and Technology Pub Date : 2024-10-16 DOI: 10.1007/s10971-024-06568-6
Firas Salim Abed, Lamia K. Abbas
{"title":"Structural, electrical, and thermal properties of Ba-substituted B(Pb)SCCO superconductors prepared by sol-gel method","authors":"Firas Salim Abed,&nbsp;Lamia K. Abbas","doi":"10.1007/s10971-024-06568-6","DOIUrl":"10.1007/s10971-024-06568-6","url":null,"abstract":"<div><p>In this study, some physical properties of BSCCO superconductors have been investigated. The effects of Ba substitution in Bi<sub>1.7</sub>Pb<sub>0.3</sub>Sr<sub>2-y</sub>Ba<sub>y</sub>Ca<sub>2</sub>Cu<sub>3</sub>O<sub>10+δ</sub> superconductor synthesized by the sol-gel method on the structural, thermal, and superconducting properties were identified. X-ray diffraction patterns display the dominant Bi-2223 high-temperature phase (HTP) mixed with the Bi-2212 low-temperature phase (LTP) in all samples. Variations in lattice parameters (<i>a, b</i> and <i>c</i>) significantly affect sample properties such as lattice volume, <i>c/a</i> ratio, and molecular weight (w). The highest percentage of HTP% appeared at y = 0.1 Ba content. Transmission Electron Microscopy (TEM) displays the formation of rod-like structures with nanoscale lengths. The Ba substitution ratio significantly determines the lattice dimension and oxygen content, affecting the prepared superconductor’s transition temperature (Tc). Thermogravimetric analysis (TGA) and differential thermal analysis (DTA) show the changes in mass loss and shifting in decomposition temperatures correlated with the Ba substitution rate. The optimal ratio of Ba was at y = 0.1, which exhibits the highest HTP percentage of 73.07% and the highest <i>T</i><sub><i>c</i></sub> of 113.5 K, suggesting improved superconducting properties.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":664,"journal":{"name":"Journal of Sol-Gel Science and Technology","volume":"112 3","pages":"837 - 845"},"PeriodicalIF":2.3,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142636868","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Synthesis and characterizations of SrMnO3 with rGO nanosheets (SMO-rGO) in energy-related applications 具有 rGO 纳米片(SMO-rGO)的 SrMnO3 在能源相关应用中的合成与表征
IF 2.3 4区 材料科学
Journal of Sol-Gel Science and Technology Pub Date : 2024-10-14 DOI: 10.1007/s10971-024-06560-0
Mishkat Majeed, Abdelaziz Gassoumi, Saeed D. Khan, Khursheed Ahmad, Aman M. Aslam Hanaish
{"title":"Synthesis and characterizations of SrMnO3 with rGO nanosheets (SMO-rGO) in energy-related applications","authors":"Mishkat Majeed,&nbsp;Abdelaziz Gassoumi,&nbsp;Saeed D. Khan,&nbsp;Khursheed Ahmad,&nbsp;Aman M. Aslam Hanaish","doi":"10.1007/s10971-024-06560-0","DOIUrl":"10.1007/s10971-024-06560-0","url":null,"abstract":"<div><p>A crucial aspect of an oxygen evolution reaction is the improvement of electrocatalysts in an alkaline solution. Owing to their highly intrinsic activity and porous nature, perovskites (ABO<sub>3</sub>) served as potential catalysts for OER. Transition-metal-oxides such as SrO<sub>2</sub>, MnO<sub>2</sub>, FeO, Co<sub>3</sub>O<sub>4</sub> and NiO are considered potential catalysts for OER; strontium and manganese base oxides are efficient and have low cost. These catalysts have gained massive attention because of their structure, morphology and polyvalency. Herein, the crystalline perovskite SrMnO<sub>3</sub>-rGO was fabricated using the hydrothermal method and analyzed using different physical and electrochemical characterizations. Different physical techniques were applied to study crystal structure, morphology and lattice vibration. The scanning electron microscopic analysis confirmed the homogeneous and small-sized structure of pristine SrMnO<sub>3</sub> and SrMnO<sub>3</sub>-rGO composite. Moreover, composite showed a greater surface area (68 m<sup>2</sup> g<sup>−1</sup>) according to the Brunauer Emmett Teller analysis. Then, the developed material was observed to determine stability, Tafel slope and overpotential. Further, the electrochemical characteristics of nickel foam (NF) are also analyzed which displays an overpotential of 378 mV and a Tafel value (80 mV dec<sup>−1</sup>). In comparison, the prepared SrMnO<sub>3</sub>-rGO composite showed an overpotential (198 mV) at standard current density (10 mA cm<sup>−2</sup>) and Tafel plot (37 mV dec<sup>−1</sup>) with higher durability (30 hours) at 4000<sup>th</sup> CV cycles. EIS was used to analyze the material’s resistance, which showed minimum R<sub>ct</sub> (0.3 Ω) for composite. The present study expands perovskite-oxides with rGO performance as a catalyst, making it highly efficient for OER electrocatalysts. It can be applied at an industrial scale in the future.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":664,"journal":{"name":"Journal of Sol-Gel Science and Technology","volume":"112 3","pages":"826 - 836"},"PeriodicalIF":2.3,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142636935","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhanced uniformity of zirconia coating for high power lasers via solvent replacement and PEG-doping 通过溶剂置换和 PEG 掺杂提高高功率激光用氧化锆涂层的均匀性
IF 2.3 4区 材料科学
Journal of Sol-Gel Science and Technology Pub Date : 2024-10-14 DOI: 10.1007/s10971-024-06586-4
Wenjie Hu, Ce Zhang, Nini Li, Shengli Wu, Yao Xu
{"title":"Enhanced uniformity of zirconia coating for high power lasers via solvent replacement and PEG-doping","authors":"Wenjie Hu,&nbsp;Ce Zhang,&nbsp;Nini Li,&nbsp;Shengli Wu,&nbsp;Yao Xu","doi":"10.1007/s10971-024-06586-4","DOIUrl":"10.1007/s10971-024-06586-4","url":null,"abstract":"<div><p>Zirconia coating has a lot of promise when it comes to enhancing the optical performance and laser-induced damage threshold (LIDT) of the mirror in laser systems. In this work, a high LIDT ZrO<sub>2</sub> coating was created using the sol-gel spin coating technique. The anhydrous ethanol solvent was substituted with alcohol ether solvent, and the spin coating technique was employed to achieve a macro homogeneous and flawless ZrO<sub>2</sub> coating. Additionally, organic polymer polyethylene glycol (average Mn 200, PEG200) doping was used to achieve the uniform ZrO<sub>2</sub> coating with LIDT. ZrO<sub>2</sub>-PEG composite coatings with consistent LIDT and exceptional optical properties were created. Alcohol ether solvents helped the sol produce a more homogeneous gel coating on the substrate, as demonstrated by the ZrO<sub>2</sub> coating microscope pictures. The LIDT with a 0.5 wt.% PEG200 content was the most uniform. PEG200 organic molecules were able to alter the link state of the ZrO<sub>2</sub> particles. The macroscopic mechanical characteristics of the coatings revealed that the hardness and elastic modulus of the ZrO<sub>2</sub>-PEG composite coating were mostly influenced by the PEG200 content. When the PEG200 content was 0.3 wt.%, the hardness and elastic modulus of the ZrO<sub>2</sub>-PEG composite coating were the lowest with the highest of the LIDT at 39.25 ± 3.13 J/cm<sup>2</sup> (@ 1064 nm, 11 ns, 1 mm<sup>2</sup>).</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":664,"journal":{"name":"Journal of Sol-Gel Science and Technology","volume":"112 3","pages":"790 - 800"},"PeriodicalIF":2.3,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142636908","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Polyfluorene incorporation for superior performance and band gap reduction: enhancing Cs2AgBiBr6 double perovskite solar cells 掺入聚芴实现卓越性能并降低带隙:增强 Cs2AgBiBr6 双包晶太阳能电池的性能
IF 2.3 4区 材料科学
Journal of Sol-Gel Science and Technology Pub Date : 2024-10-14 DOI: 10.1007/s10971-024-06582-8
Asad Ullah, Wasif ur Rehman, Muhammad Iftikhar Khan, N. S. Abd EL-Gawaad
{"title":"Polyfluorene incorporation for superior performance and band gap reduction: enhancing Cs2AgBiBr6 double perovskite solar cells","authors":"Asad Ullah,&nbsp;Wasif ur Rehman,&nbsp;Muhammad Iftikhar Khan,&nbsp;N. S. Abd EL-Gawaad","doi":"10.1007/s10971-024-06582-8","DOIUrl":"10.1007/s10971-024-06582-8","url":null,"abstract":"<div><p>Lead-free halide double perovskites (LFHDPs) based on Cs<sub>2</sub>AgBiBr<sub>6</sub> are a good replacement for traditional lead-based LBPs due to their chemical stability and lack of toxicity. Double perovskite Cs<sub>2</sub>AgBiBr<sub>6</sub>-based solar cells have limited efficiency due to a large band gap, suggesting polyfluorene (PF) replacement as a workable solution to enhance their optical and photovoltaic characteristics. PF incorporation-induced crystal structural changes, as demonstrated by peak position shifts in X-ray diffraction. The UV–Vis spectroscopy, and solar simulator tests, were used to study the effect of PF on Cs<sub>2</sub>AgBiBr<sub>6</sub>. Optical examination reveals a decrease in <i>E</i><sub>g</sub>, leading to improved light absorption in the visible spectrum. By adding PF to their lattices, we effectively give the weakly luminous Cs<sub>2</sub>AgBiBr<sub>6</sub> double perovskite robust red luminescence. The Cs<sub>2</sub>Ag<sub>0.95</sub>PF<sub>0.05</sub>BiBr<sub>6</sub> solar cell has demonstrated a notable enhancement in performance. In that order, its enhanced fill factor, short-circuit current, and open-circuit voltage are 0.81, 5.73 mA cm<sup>−2</sup>, and 0.93 V. Power conversion efficiency (PCE) has improved from 3.75% to 4.26%. About 13.60% of efficiency is increased by PF incorporation. The study identifies Cs<sub>2</sub>Ag<sub>0.95</sub>PF<sub>0.05</sub>BiBr<sub>6</sub> as a high-performance material for solar applications and addresses issues with film formation. Our objective is to advance environmentally friendly solar technologies by enhancing efficiency, with future research focusing on interfacial engineering, specifically optimizing electron and hole transport layers.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":664,"journal":{"name":"Journal of Sol-Gel Science and Technology","volume":"112 3","pages":"814 - 825"},"PeriodicalIF":2.3,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142636910","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Efficient tetracycline removal from hospital wastewater using visible light active M-type lead hexaferrite/g-C3N4 composites 利用可见光活性 M 型六氟化铅/g-C3N4 复合材料高效去除医院废水中的四环素
IF 2.3 4区 材料科学
Journal of Sol-Gel Science and Technology Pub Date : 2024-10-14 DOI: 10.1007/s10971-024-06590-8
Mudasir Mahmood, Shahid Iqbal, Muhammad Jamshaid, Ambreen Kalsoom, Amal M. Al-Mohaimeed, Rashid Iqbal, Firdous Bibi, Qasim Raza, Mohamed Soliman Elshikh
{"title":"Efficient tetracycline removal from hospital wastewater using visible light active M-type lead hexaferrite/g-C3N4 composites","authors":"Mudasir Mahmood,&nbsp;Shahid Iqbal,&nbsp;Muhammad Jamshaid,&nbsp;Ambreen Kalsoom,&nbsp;Amal M. Al-Mohaimeed,&nbsp;Rashid Iqbal,&nbsp;Firdous Bibi,&nbsp;Qasim Raza,&nbsp;Mohamed Soliman Elshikh","doi":"10.1007/s10971-024-06590-8","DOIUrl":"10.1007/s10971-024-06590-8","url":null,"abstract":"<div><p>The hospital wastewater is major contributor to pharmaceutical contaminants, particularly antibiotic like tetracycline. Tetracycline is often found as a pollutant in water bodies, primarily due to its improper disposal and excretion through human and animal waste. This wastewater poses serious environmental and health risks. We synthesized a novel composite material M type lead hexaferrites/g-carbon nitride (PbFe<sub>12</sub>O<sub>19</sub>/g-C<sub>3</sub>N<sub>4</sub>) to address this alarming issue. The combine effect of lead hexaferrite with graphitic-C<sub>3</sub>N<sub>4</sub>, aiming to enhance the degradation of tetracycline (TC). The characterization of the synthesized composite was conducted using X-ray diffraction spectroscopy (XRD), Scanning electron microscope (SEM), Fourier transform infrared radiation spectroscopy (FTIR) and UV-Visible spectroscopy. The photocatalytic output of the samples was evaluated under sunlight irradiation. The results demonstrated superior removal efficiency of tetracycline up to 90% in only 60 min compared to individual components. This work highlights the potential of PbFe<sub>12</sub>O<sub>19</sub>/g-C<sub>3</sub>N<sub>4</sub> composites as effective photocatalysts for treating pharmaceutical contaminants especially tetracycline in wastewater.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":664,"journal":{"name":"Journal of Sol-Gel Science and Technology","volume":"112 3","pages":"801 - 813"},"PeriodicalIF":2.3,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142636936","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Novel molybdenum sulfide-decorated graphitic carbon nitride nanohybrid for enhanced electrochemical oxygen evolution reaction 用于增强电化学氧进化反应的新型硫化钼装饰氮化石墨碳纳米杂化物
IF 2.3 4区 材料科学
Journal of Sol-Gel Science and Technology Pub Date : 2024-10-14 DOI: 10.1007/s10971-024-06561-z
Arooj Fatima, Albandari W. Alrowaily, Haifa A. Alyousef, B. M. Alotaibi, A. Dahshan
{"title":"Novel molybdenum sulfide-decorated graphitic carbon nitride nanohybrid for enhanced electrochemical oxygen evolution reaction","authors":"Arooj Fatima,&nbsp;Albandari W. Alrowaily,&nbsp;Haifa A. Alyousef,&nbsp;B. M. Alotaibi,&nbsp;A. Dahshan","doi":"10.1007/s10971-024-06561-z","DOIUrl":"10.1007/s10971-024-06561-z","url":null,"abstract":"<div><p>Transition metal chalcogenides are potentially better than electrocatalysts for the OER electrolysis that contain rare earth metals. Still, they have not yet developed to a catalytic performance level that would enable widespread adoption. To attain high-efficiency OER, it is imperative to create logical designs for electrocatalysts based upon transition metals on showing polymer substrate. Here, we discuss the sonication fabrication and extraordinary catalytic activity of MoS<sub>2</sub>/g-CN in alkaline media as an OER electrocatalyst. Various techniques like X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET) and scanning electron microscopy (SEM) are employed to evaluate the structure, surface characteristics and morphology. Conversely, the MoS<sub>2</sub>/g-CN electrode’s higher specific SA, outstanding conductivity and very porous framework in 1 M alkaline KOH led to superior OER campaign (overpotential 203 mV with Tafel slope 36 mV/dec). It showed increased OER activity by maintaining high stability for about 35 h. Our results suggest that graphitic carbon nitride can produce steady and sustainable energy and that transition metal chalcogenides with specific morphologies can improve electrocatalytic efficacy. Because of the distinct crystal phase-linked electrical properties, this discovery provides a fresh perspective for potential applications.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":664,"journal":{"name":"Journal of Sol-Gel Science and Technology","volume":"112 3","pages":"776 - 789"},"PeriodicalIF":2.3,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142636909","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
“Tuning density and morphology of organic-inorganic hybrid-silica aerogels through precursor dilution for lightweight applications” "通过前驱体稀释调节有机-无机杂化二氧化硅气凝胶的密度和形态,实现轻质应用"
IF 2.3 4区 材料科学
Journal of Sol-Gel Science and Technology Pub Date : 2024-10-11 DOI: 10.1007/s10971-024-06572-w
K. Steffens, D. Bialuschewski, B. Milow
{"title":"“Tuning density and morphology of organic-inorganic hybrid-silica aerogels through precursor dilution for lightweight applications”","authors":"K. Steffens,&nbsp;D. Bialuschewski,&nbsp;B. Milow","doi":"10.1007/s10971-024-06572-w","DOIUrl":"10.1007/s10971-024-06572-w","url":null,"abstract":"<div><p>Organic-inorganic hybrid-silica aerogels can be made of methyltrimethoxysilane (MTMS, CH<sub>3</sub>Si(OCH<sub>3</sub>)<sub>3</sub>) and dimethyldimethoxysilane (DMDMS, Si(OCH<sub>3</sub>)<sub>2</sub>(CH<sub>3</sub>)<sub>2</sub>) in a typical sol-gel process yielding flexible and hydrophobic structures. In this work, MTMS and DMDMS were condensed with an increasing amount of water, leading to a decrease in the final materials density from ∼ 0.110 g cm<sup>−3</sup> down to ∼0.066 g cm<sup>−3</sup>. The gels were synthesized in a one-pot synthesis and dried under ambient pressure conditions at 80 °C. While the topology of the network remained intact, the size of secondary particles decreased from roughly 8.2 to 3.3 μm. The inter-particle neck thickness remained unaffected with increasing aging time for higher dilutions. The measured thermal conductivities were all in similar range (∼ 32.5 mW (m K)<sup>−1</sup> at 25 °C), showing very good insulation characteristics. In general, higher diluted samples exhibited increasing softness and decreasing Young’s modulus, even with increased aging times. Overall, our optimized recipe leads to hydrophobic aerogels with ultralow densities while demonstrating very low thermal conductivity and a flexible mechanical performance.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":664,"journal":{"name":"Journal of Sol-Gel Science and Technology","volume":"112 3","pages":"768 - 775"},"PeriodicalIF":2.3,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10971-024-06572-w.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142636957","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Valorizing shrimp shell chitosan: a versatile biomaterial for fabricating effective antibacterial and antioxidant silver nanoparticles 利用虾壳壳聚糖:制造有效抗菌和抗氧化银纳米粒子的多功能生物材料
IF 2.3 4区 材料科学
Journal of Sol-Gel Science and Technology Pub Date : 2024-10-07 DOI: 10.1007/s10971-024-06578-4
Abdelatif Aouadi, Djamila Hamada Saoud, Abdelkrim Rebiai, Salah Eddine Laouini, Abdelhak Achouri, Abdelmalek Zaater, Fahad Alharthi, Abderrhmane Bouafia, Hamdi Ali Mohammed, Gamil Gamal Hasan, Johar Amin Ahmed Abdullah
{"title":"Valorizing shrimp shell chitosan: a versatile biomaterial for fabricating effective antibacterial and antioxidant silver nanoparticles","authors":"Abdelatif Aouadi,&nbsp;Djamila Hamada Saoud,&nbsp;Abdelkrim Rebiai,&nbsp;Salah Eddine Laouini,&nbsp;Abdelhak Achouri,&nbsp;Abdelmalek Zaater,&nbsp;Fahad Alharthi,&nbsp;Abderrhmane Bouafia,&nbsp;Hamdi Ali Mohammed,&nbsp;Gamil Gamal Hasan,&nbsp;Johar Amin Ahmed Abdullah","doi":"10.1007/s10971-024-06578-4","DOIUrl":"10.1007/s10971-024-06578-4","url":null,"abstract":"<div><p>A study was conducted to explore the potential of using chitosan (CS) derived from shrimp shells, a bioorganic waste product, as a reducing and capping agent in the synthesis of silver nanocomposites (Cs-Ag NC). The objective of the study was to develop a simpler, faster, and more environmentally friendly method for producing Cs-Ag NC. The synthesized Cs-Ag NC was characterized using UV-Vis spectroscopy, X-ray diffraction spectroscopy, Fourier transform infrared spectroscopy, and scanning electron microscopy. The findings revealed that the Cs-Ag NC exhibited a crystalline structure, was coated with CS components, and had a spherical shape with an average diameter of approximately 20 nm. Under optimal conditions, the synthesized Cs-Ag NC demonstrated significant free radical scavenging activity against <i>2-diphenyl-1-picrylhydrazyl</i> (DPPH) with an IC50 value of 1.65 mg/mL, substantial free radical scavenging activity against 2,2’-azino-bis(<i>3-ethylbenzothiazoline-6-sulfonic acid</i>) (ABTS) with an IC50 value of 2.8 mg/mL, and notable anti-inflammatory activity. Additionally, the Cs-Ag NC exhibited significant antibacterial activity against several pathogenic strains, including <i>Pseudomonas aeruginosa</i>, <i>Escherichia coli</i>, and <i>Staphylococcus aureus</i>. Based on these findings, the synthesized Cs-Ag NC possess promising potential as therapeutic drugs for antioxidant and antibacterial applications.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":664,"journal":{"name":"Journal of Sol-Gel Science and Technology","volume":"112 3","pages":"752 - 767"},"PeriodicalIF":2.3,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142636882","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信