Ramzi Dhahri, Majdi Benamara, Souhir Bouzidi, Sana Ben Moussa, Abdullah Yahya Abdullah Alzahrani, Kais Iben Nassar, Nassim Zahmouli, Elkenany Brens Elkenany, A. M. Al-Syadi
{"title":"Effect of Gd doping on the microstructure and electrical characteristics of Maghemite (γ-Fe₂O₃) ceramics","authors":"Ramzi Dhahri, Majdi Benamara, Souhir Bouzidi, Sana Ben Moussa, Abdullah Yahya Abdullah Alzahrani, Kais Iben Nassar, Nassim Zahmouli, Elkenany Brens Elkenany, A. M. Al-Syadi","doi":"10.1007/s10971-024-06598-0","DOIUrl":"10.1007/s10971-024-06598-0","url":null,"abstract":"<div><p>This paper presents a novel study on the microstructure and electrical properties of gadolinium (Gd) doped maghemite (γ-Fe₂O₃) nanoparticles, emphasizing their significance for advanced applications in efficient materials. X-ray diffraction analysis confirmed that both pure and doped samples crystallized in a cubic structure (P4<sub>3</sub>32 space group) with high purity. Gd doping significantly increased crystallite size and altered particle morphology, as shown by transmission electron microscopy (TEM), which revealed larger nanoparticles with cubic shapes. Thermal analysis (TGA and DTG) indicated that higher Gd concentrations enhanced thermal instability, affecting structural integrity. FTIR spectra showed shifts in Fe-O bond vibrations, suggesting lattice distortions and increased disorder. BET measurements indicated that higher Gd doping led to greater mesoporosity and surface area, countering expectations of densification. Electrical conductivity and impedance studies revealed two distinct regions: a constant conductivity at low frequencies and an exponential increase at high frequencies, attributed to small polaron hopping. Activation energy values below 200 meV support this mechanism. Gd doping decreased overall conductivity due to disrupted atomic arrangements, increased electron scattering, and modifications in the electronic band structure. Complex impedance spectroscopy illustrated higher real impedance values for doped samples, with increased Gd concentration leading to enhanced impedance. These findings elucidate the impact of Gd on the electrical properties of maghemite nanoparticles and highlight their importance in meeting the growing demands for highly efficient technologies in energy storage and electronic devices.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":664,"journal":{"name":"Journal of Sol-Gel Science and Technology","volume":"113 1","pages":"225 - 242"},"PeriodicalIF":2.3,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10971-024-06598-0.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142941237","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Shahroz Saleem, Awais Khalid, Zaid M. Aldhafeeri, Thamer Alomayri, Arshad Ali, Abdul Jabbar, M. Yasmin Begum, Geetha Kandasamy
{"title":"A comparative analysis of optical and electrical properties of pure CuO and Zn doped CuO nanoparticles for optoelectronic device applications","authors":"Shahroz Saleem, Awais Khalid, Zaid M. Aldhafeeri, Thamer Alomayri, Arshad Ali, Abdul Jabbar, M. Yasmin Begum, Geetha Kandasamy","doi":"10.1007/s10971-024-06591-7","DOIUrl":"10.1007/s10971-024-06591-7","url":null,"abstract":"<div><p>A sol-gel auto-combustion was used to prepare both pure and Zn-doped CuO NPs. The effect of Zn<sup>2+</sup> on the electrical properties was investigated for use in optoelectronic device applications. The XRD analysis exhibited the synthesized CuO has a single monoclinic phase with a ZnO secondary phase. SEM micrographs show the spherical and cubic structure of the pure and Zn-doped CuO NPs, respectively. The average crystalline size, lattice constants, dislocation density, and microstrain were measured in the range of 25.23–21.18 nm, 7.893–7.745 A°, 1.57–2.22 × 10<sup>15 </sup>m<sup>−2</sup> and −3.55 × 10<sup>−4</sup>× to –4.34 × 10<sup>−4</sup>, respectively. The Raman results revealed that sharper and stronger peaks were detected which also shifted to higher wavenumbers with declining particle size which are well matched to XRD results and revealed the pureness of the samples. The band gap was estimated with Tauc’s equation, and the findings showed that the addition of Zn<sup>2+</sup> ions increased the band gap’s energy from 1.47 eV to 1.62 eV. To ascertain the electrical characteristics of produced nanoparticles, electrical characteristic investigations were carried out. From the consequences, it has been analyzed that electrical resistivity enhanced from 9.12 × 10<sup>3</sup> to 4.84 × 10<sup>4</sup> Ω cm with the addition of Zn in CuO. Based on the obtained consequences, it can be predicted that the modified electrical and optical properties of the prepared CuO nanoparticles can make them a potential candidate for optoelectronic applications, if control the generation of secondary phase, band gap enhancement, and generation of oxygen vacancies, because these factor influences the charge carrier’s mobility.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":664,"journal":{"name":"Journal of Sol-Gel Science and Technology","volume":"113 1","pages":"213 - 224"},"PeriodicalIF":2.3,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142940975","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Shaan Bibi Jaffri, Khuram Shahzad Ahmad, Jehad S. Al-Hawadi, Bhumikaben Makawana, Ram K. Gupta, Ghulam Abbas Ashraf, Mohammad K. Okla
{"title":"Revolutionizing energy storage and electro-catalysis: unleashing electrode power with novel BaS3:La2S3:Ho2S3 synthesized from single-source precursors for enhanced electrochemical functionality","authors":"Shaan Bibi Jaffri, Khuram Shahzad Ahmad, Jehad S. Al-Hawadi, Bhumikaben Makawana, Ram K. Gupta, Ghulam Abbas Ashraf, Mohammad K. Okla","doi":"10.1007/s10971-024-06599-z","DOIUrl":"10.1007/s10971-024-06599-z","url":null,"abstract":"<div><p>Electrochemical energy storage has utility in wide range of systems, therefore scientific community and energy stakeholders have been significantly focusing especially on it. By utilizing the novel BaS<sub>3</sub>:La<sub>2</sub>S<sub>3</sub>:Ho<sub>2</sub>S<sub>3</sub> semiconductor, an alkaline earth-lanthanide composite chalcogenide (AE-LCC), which is developed by chelating with the diethyldithiocarbamate ligand, the current work, for the first time, seeks to enhance the performance of charge retaining devices in addition to electro-catalysis. This photo-active material exhibits exceptional optical properties with a band gap of 3.95 eV and heterogeneous crystallographic modes with a median crystallite size of 17.78 nm, due to its sustainable manufacturing process. Furthermore, infrared spectroscopy was used to identify metallic sulfide connections, which vary between 545 and 887 cm<sup>−1</sup>. Differently shaped particles that fused into a rod-like structure showed a higher volume-surface area ratio at multiple locations. The electrochemical performance of the BaS<sub>3</sub>:La<sub>2</sub>S<sub>3</sub>:Ho<sub>2</sub>S<sub>3</sub> AE-LCC was assessed using a conventional three-electrode configuration with an initial electrolyte of 1 M KOH. BaS<sub>3</sub>:La<sub>2</sub>S<sub>3</sub>:Ho<sub>2</sub>S<sub>3</sub> AE-LCC exhibits excellent specific capacitance of as high as 779 F g<sup>−1</sup> and a power density of 10,145.28 W kg<sup>−1</sup>, making it an excellent electrode material for power storage applications. This remarkable electrochemical performance was further substantiated by comparable series resistance (<i>R</i><sub><i>s</i></sub>) = 1.25 Ω. The electrode generated an OER overpotential and a matching Tafel slope of 417 mV and 113 mV/dec by electro-catalysis. Conversely, the Tafel slope of HER activity was 310 mV/dec, and its overpotential was 233 mV.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":664,"journal":{"name":"Journal of Sol-Gel Science and Technology","volume":"113 1","pages":"197 - 212"},"PeriodicalIF":2.3,"publicationDate":"2024-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142941184","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Preparation of monolithic silica HPLC columns with truss-structured skeletons and embedded surfactant-templated mesopores","authors":"Takanori Detani, Kei Morisato, Masayoshi Ohira, Kazuki Nakanishi","doi":"10.1007/s10971-024-06595-3","DOIUrl":"10.1007/s10971-024-06595-3","url":null,"abstract":"<div><p>Monolithic macro/mesoporous silica gels have been prepared via a sol-gel process using triblock copolymer Pluronic P123 (EO<sub>20</sub>PO<sub>70</sub>EO<sub>20</sub>) as a structure-directing agent. In this synthesis, P123 not only induces phase separation to form macroporous structure but also acts as a supramolecular template to form mesopores with precisely controlled shape and size. Obtained was a monolithic silica composed of continuous truss-like columnar skeletons in which cylindrical mesopores are arranged in a 2D-hexagonal symmetry. These monolithic silica gels have extremely high porosity approaching 90% and exhibited high specific surface area and sharp pore size distribution as revealed by N<sub>2</sub> sorption measurements. Combinations of the initial composition and the post-gelation treatment on wet gels allowed the control of physical properties of meso- and macropore structures. The monolithic HPLC columns prepared using these silica gels surface-modified by ODS (octadecylsilyl) ligands gave as many as 140,000 theoretical plates/m for the separation of alkylbenzenes in a reversed-phase mode. Very weak dependence of height equivalent to theoretical plate, <i>H,</i> on the mobile phase velocity was also recognized in comparison with conventional particle-packed columns.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><img></picture></div><div><p>SEM images of monolithic silica prepared with tetramethoxysilane (TMOS) and P123 composed of truss-structured continuous skeletons. The performance for HPLC separation medium was examined.</p></div></div></figure></div></div>","PeriodicalId":664,"journal":{"name":"Journal of Sol-Gel Science and Technology","volume":"113 1","pages":"63 - 69"},"PeriodicalIF":2.3,"publicationDate":"2024-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10971-024-06595-3.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142941185","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Asad ur Rehman Khan, Muhammad Ramzan, Sajawal ur Rehman Khan, Islem Abid, Faisal Saud Binhuday, Muhammad Abdul Majid, Abdul Rehman, Abhishek Singh
{"title":"Sol-gel synthesis, characterizations of efficient Y3+ doped ZnO nanoparticles for photocatalytic dye degradation and energy storage applications","authors":"Asad ur Rehman Khan, Muhammad Ramzan, Sajawal ur Rehman Khan, Islem Abid, Faisal Saud Binhuday, Muhammad Abdul Majid, Abdul Rehman, Abhishek Singh","doi":"10.1007/s10971-024-06597-1","DOIUrl":"10.1007/s10971-024-06597-1","url":null,"abstract":"<div><p>In this study, we report on the crystallographic, optical, and electrochemical properties of Yttrium (Y³⁺) doped ZnO nanoparticles synthesized by using the sol-gel method. The incorporation of Y³⁺ ions resulted in a significant reduction in the optical bandgap, from 3.26 eV for pure ZnO to 2.67 eV for Y-C nanoparticles, improving their light absorption capacity under visible light. X-ray diffraction analysis revealed a hexagonal wurtzite structure, showing an increase in crystallite size with the incorporation of Y³⁺ doping. This was accompanied by superior photocatalytic performance, where Y-B (4% Y³⁺) doped ZnO nanoparticles exhibited remarkable 97% degradation efficiency for methylene blue (MB), 4.4 times greater than that of undoped ZnO. Electrochemical analysis revealed an improvement in specific capacitance, ranging from 20.56 F/g to 75.88 F/g at various scan rates, highlighting the potential of Y-ZnO as a material for energy storage applications. These enhancements can be attributed to the unique influence of Y³⁺ ions, which induce lattice expansion and promote charge transfer efficiency. The synthesized Y<sup>3+</sup> doped ZnO nanoparticles can be potential candidates for industrial applications such as environmental remediation through photocatalysis, and energy storage devices like supercapacitors.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":664,"journal":{"name":"Journal of Sol-Gel Science and Technology","volume":"113 1","pages":"180 - 196"},"PeriodicalIF":2.3,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142941088","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Kashan Ali Geelani, F. F. Alharbi, Abdullah G. Al-Sehemi, A.M.A. Henaish
{"title":"Synthesis and characterization of perovskite based rGO nanomaterial for energy storage application","authors":"Kashan Ali Geelani, F. F. Alharbi, Abdullah G. Al-Sehemi, A.M.A. Henaish","doi":"10.1007/s10971-024-06587-3","DOIUrl":"10.1007/s10971-024-06587-3","url":null,"abstract":"<div><p>The consumption of renewable energy sources has seen a rapid and significant increase in the last decade, hence enhancing the need for the prompt progress of an energy storage setup. Advancing the properties of fabricated electrodes might potentially resolve this kind of issue. The perovskite based nanocomposite with carbonations materials has several applications, particularly in energy conversion and storage. Here, a new MgCeO<sub>3</sub>/rGO nanocomposite material was fabricated using the hydrothermal method for the energy storage system. In this article, the physical behavior of the synthesized material MgCeO<sub>3</sub>/rGO composite were examined through physical as well as electrical properties by electrochemical techniques. In MgCeO<sub>3</sub>/rGO composite rGO enhanced the surface area due to redox activity increased. The electrochemical behavior of the MgCeO<sub>3</sub>/rGO nanocomposite sample had a specific capacitance (C<sub>s</sub>) value (1494.65 F g<sup>−1</sup>) at 1 A·g<sup>−1</sup>. Moreover, the fabricated electrode illustrated the best cycle stability after successive 5000th cycle Additionally, enhanced in electrochemical characteristics of prepared MgCeO<sub>3</sub>/rGO composite can be attributed to its extensive surface area, negligible resistances and swift flow of electrolyte ions compared to the individual substances. Moreover, in the future, the MgCeO<sub>3</sub>/rGO composite, which can be used to fabricate the electrode material, can be used in diverse electrochemical applications as electrode material in storage mechanisms.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":664,"journal":{"name":"Journal of Sol-Gel Science and Technology","volume":"113 1","pages":"169 - 179"},"PeriodicalIF":2.3,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142941133","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lobna Messeddek, Fatma Amraoui, Louiza Arab, Nouredine Sengouga
{"title":"Effect of different substrates on the structural, morphological, electrical, and optical properties of β-Ga2O3 thin films deposited by the sol-gel spin coating method","authors":"Lobna Messeddek, Fatma Amraoui, Louiza Arab, Nouredine Sengouga","doi":"10.1007/s10971-024-06585-5","DOIUrl":"10.1007/s10971-024-06585-5","url":null,"abstract":"<div><p>β-Ga₂O₃ thin films were successfully deposited on sapphire, quartz, and silicon substrates using a sol-gel spin coating method. This study aims to investigate the influence of different substrates on the properties of β-Ga₂O₃ thin films. The properties of the films were analyzed using various techniques, including X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM, TUNA), Fourier transform infrared (FTIR) spectroscopy, and ultraviolet-visible (UV-Vis) spectrophotometry. XRD analyses revealed that all deposited films exhibited a polycrystalline structure with a monoclinic β-phase, with the best crystallinity observed on the sapphire substrate, showing a crystallite size of 35.92 nm. SEM micrographs displayed a granular morphology with varying granule sizes. AFM (TUNA) analysis was used to examine surface morphology and current transport characteristics, showing that surface roughness increased from quartz to sapphire to silicon (2.94 nm, 4.8 nm, and 7.01 nm, respectively). Electrical resistivity increased in the order: quartz, silicon, and sapphire. The highest transmission, nearly 100% in the visible spectrum, was observed for the β-Ga₂O₃ film grown on the sapphire substrate, which also had a band gap of approximately 5.4 eV as evaluated from UV-Vis spectrophotometry.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":664,"journal":{"name":"Journal of Sol-Gel Science and Technology","volume":"113 1","pages":"159 - 168"},"PeriodicalIF":2.3,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142941143","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yasmeen Khan, Sajid Mahmood, Mohsin Javed, Sana Mansoor, Misbah Umar, Sammia Shahid, Ammar Zidan, Rabia Nawaz, Shahid Iqbal, Abd-ElAziem Farouk, Salman Aloufi, Hala M. Abdelmigid, Toheed Akhter
{"title":"Designing an eco-friendly Co/MnS/S-g-C3N4 nanocomposites: revolutionizing photocatalytic dye degradation and antibacterial efficiency","authors":"Yasmeen Khan, Sajid Mahmood, Mohsin Javed, Sana Mansoor, Misbah Umar, Sammia Shahid, Ammar Zidan, Rabia Nawaz, Shahid Iqbal, Abd-ElAziem Farouk, Salman Aloufi, Hala M. Abdelmigid, Toheed Akhter","doi":"10.1007/s10971-024-06592-6","DOIUrl":"10.1007/s10971-024-06592-6","url":null,"abstract":"<div><p>This study utilized an eco-friendly, simple, and cost-effective co-precipitation method to synthesize pure MnS and a series of Co/MnS nanoparticles (NPs) with varying cobalt contents (2%, 4%, 6%, 8%, and 10%). Thiourea was calcined at 552 °C to prepare S-g-C<sub>3</sub>N<sub>4</sub> (SCN) nanosheets. The optimal doped NPs were combined with S-g-C<sub>3</sub>N<sub>4</sub> to create a series of nanocomposites (10%, 30%, 50%, 70%, and 90%). The materials band gap (Eg) values were determined using Tauc plots. Photodegradation of MB dye was conducted with a UV-Vis spectrophotometer. According to the best of our knowledge, Sulfur-doped graphitic carbon nitride (S-g-C₃N₄) has been used for the first time in combination with cobalt and manganese sulfide nanoparticles to synergistically enhance visible-light photocatalytic activity, enabling efficient degradation of a toxic organic dye methylene blue. Besides photocatalytic treatment, the antibacterial results reveal that (Co /MnS/ S-g-C₃N₄) effectively destroyed bacteria with a synergy effect among cobalt elements, MnS and S-g-C₃N₄. Results indicated that doping 6% cobalt into the MnS lattice enhanced photocatalytic oxidation/reduction. The highest photodegradation performance was observed in 6% Co/MnS@10% SCN nanocomposites, attributed to improved charge separation and reduced charge recombination. The synthesized nano-catalysts maintained significant degradation percentages even after three cycles. The structural morphologies of pure MnS, 6% Co/MnS, S-g-C<sub>3</sub>N<sub>4</sub>, and 6% Co/MnS@ 10% SCN nanocomposites were analyzed using XRD and FTIR. Kinetic studies of the prepared nanomaterials were conducted to determine their rate constants. The antibacterial performance of the best photocatalysts was tested against Bacillus subtilis and Escherichia coli. The results suggest that composite synthesis and doping enhanced the antibacterial activity of MnS, with the trend for antimicrobial activity being MnS < 6% Co/MnS < 6% Co/MnS@10% SCN.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":664,"journal":{"name":"Journal of Sol-Gel Science and Technology","volume":"113 1","pages":"145 - 158"},"PeriodicalIF":2.3,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142941219","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Guoqiang Yang, Ye Hong, Yimei Wang, Xuechao Shi, Shuxian Hou, Xinxin Liu, Yuxuan Wang, Fei Ge, Jun Wang
{"title":"Ultra-facile synthesis of CuO nanoclusters with excellent antibacterial activity and their antimicrobial mechanism study","authors":"Guoqiang Yang, Ye Hong, Yimei Wang, Xuechao Shi, Shuxian Hou, Xinxin Liu, Yuxuan Wang, Fei Ge, Jun Wang","doi":"10.1007/s10971-024-06569-5","DOIUrl":"10.1007/s10971-024-06569-5","url":null,"abstract":"<div><p>It is well known that bacterial infections pose a great threat to human health and life, and the situation has intensified because of the emergence of drug-resistant bacteria, especially in the medical field, the number of deaths due to super-bacteria infections that result from antibiotic misuse continues to increase every year. Researchers have been working hard and trying to find a suitable method to fight against bacterial infections, however, there is still no effective method to fight drug-resistant bacterial infections. In this study, an ultra-facile strategy was built to synthesize Copper Oxide Nanoclusters (CuO NCs), that exhibited broad-spectrum bactericidal activity against common pathogenic Gram-positive and Gram-negative bacteria. The synthesized CuO NCs exhibited a cluster structure with good stability and biocompatibility. The antibacterial mechanism revealed that the synthesized CuO NCs can cause bacterial death in multiple ways, including disrupting the bacterial cell membrane and ablating the biofilm, inducing the generation of ROS, and leading to nucleic acid leakage of bacteria. CuO NCs are simple to synthesize, have strong antibacterial activity, and are expected to open new avenues of antibacterial activity in the severe antibiotic environment due to the combination of antibacterial mechanisms that make it difficult for bacteria to develop drug resistance quickly.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div><div><p>In this study, we designed and synthesized copper oxide nanoclusters (CuO NCs) with favorable biosafety and stability for combating bacterial infection problems. The material possesses several advantages that including: (1) CuO NCs are synthesized in a straightforward and expeditious method. (2) CuO NCs have been demonstrated to possess good biocompatibility. (3) The synthesized CuO NCs exhibit broad-spectrum antimicrobial activity against <i>E. coli</i> and <i>S. aureus</i>, as well as for their drug-resistant strains. (4) The synthesized CuO NCs are capable of effectively removing biofilms formed by bacteria and promoting ROS generation, which disrupts the bacterial cell membrane, induces nucleic acid leakage, and ultimately cause the death of bacteria. This study employing an efficient strategy to synthesize CuO NCs with excellent broad-spectrum anti-bacterial ability, offering a promising method for addressing the growing challenge of multi-drug resistant bacteria.</p></div></div></figure></div></div>","PeriodicalId":664,"journal":{"name":"Journal of Sol-Gel Science and Technology","volume":"113 1","pages":"132 - 144"},"PeriodicalIF":2.3,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142941108","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zein K. Heiba, Ah Abd Ellatief, Mohamed Bakr Mohamed, A. M. El-naggar, Hassan Elshimy
{"title":"Investigation of Sn1-xCoxS nanocomposites as a catalyst for hydrogen production from sodium borohydride methanolysis","authors":"Zein K. Heiba, Ah Abd Ellatief, Mohamed Bakr Mohamed, A. M. El-naggar, Hassan Elshimy","doi":"10.1007/s10971-024-06596-2","DOIUrl":"10.1007/s10971-024-06596-2","url":null,"abstract":"<div><p>Samples of Sn<sub>1-x</sub>Co<sub>x</sub>S (x = 0, 0.025, 0.075, 0.1) were synthesized via the thermal evaporation approach under N<sub>2</sub> gas. The phase characterization of the synthesized samples was conducted employing HighScore plus software. The quantitative assessment of the resulting phases and their structure and microstructure parameters were determined using Rietveld refinement methodology. The SEM images validated the formation of two-dimensional sheets firmly stacked in building blocks, and the corresponding EDS analysis substantiated the incorporation of Co ions in the samples. FTIR and Raman spectroscopic techniques were utilized to corroborate the established phases, chemical composition and the inclusion of Co within the samples. The impact of doping on the absorption and reflectance features of Sn<sub>1-x</sub>Co<sub>x</sub>S samples was investigated. The substantial absorption that forms a plateau in the visible range suggests that all samples possess the capability for effective utilization of visible light. In the UV and visible regions, the sample with x = 0.025 revealed the highest absorbance, while in the IR region, the sample with x = 0.1 displayed the peak absorbance value. The lowest optical band gap energy values (1.15 and 3.38 eV) were obtained at x = 0.075. The influence of nano Sn<sub>1-x</sub>Co<sub>x</sub>S samples on the rate of hydrogen generation through the utilization of sodium borohydride (NaBH<sub>4</sub>) is explored. Sample containing 10% Co exhibits the highest generation rate at 59382 mL min<sup>−1</sup>g<sup>−1</sup>.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":664,"journal":{"name":"Journal of Sol-Gel Science and Technology","volume":"113 1","pages":"123 - 131"},"PeriodicalIF":2.3,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142941104","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}