Optimization of Candida antarctica lipase immobilization in xerogels using an ionic liquid additive: enhanced esterification activity and thermal stability

IF 2.3 4区 材料科学 Q2 MATERIALS SCIENCE, CERAMICS
Paloma Truccolo Reato, Adriele Sabrina Todero, Fabiana de Oliveira Pereira, Rogério Marcos Dallago, Marcelo Luis Mignoni
{"title":"Optimization of Candida antarctica lipase immobilization in xerogels using an ionic liquid additive: enhanced esterification activity and thermal stability","authors":"Paloma Truccolo Reato,&nbsp;Adriele Sabrina Todero,&nbsp;Fabiana de Oliveira Pereira,&nbsp;Rogério Marcos Dallago,&nbsp;Marcelo Luis Mignoni","doi":"10.1007/s10971-024-06656-7","DOIUrl":null,"url":null,"abstract":"<div><p>The immobilization of Candida antarctica lipase B (CALB) within xerogels synthesized through the sol-gel method was investigated, employing the ionic liquid 1-octyl-3-methylimidazolium bromide (C<sub>8</sub>MI.Br) as an additive to enhance enzymatic performance. The optimization of enzyme mass and ionic liquid concentration, using a central composite experimental design, identified optimal conditions of 0.27 g/mL enzyme and 1.53% ionic liquid, yielding a maximum total esterification activity exceeding 500 U. Structural characterization, including BET surface area analysis and X-ray diffraction, confirmed the formation of a porous, amorphous matrix conducive to enzyme stability and activity. The incorporation of the ionic liquid significantly enhanced the xerogels’ thermal and operational stability. Residual esterification activity was maintained at approximately 80% after 100 days under refrigeration, and the xerogels exhibited reusability for up to eight catalytic cycles with residual activity above 50%. Furthermore, thermal stability assessments demonstrated superior resistance of the immobilized enzyme to elevated temperatures compared to its free counterpart. This study underscores the critical role of ionic liquids as additives, facilitating the formation of structurally optimized xerogels while preserving enzyme activity and stability. The findings suggest significant potential for industrial biocatalytic processes, offering a sustainable and efficient approach to enzyme immobilization for applications requiring enhanced catalytic performance and longevity.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":664,"journal":{"name":"Journal of Sol-Gel Science and Technology","volume":"113 3","pages":"737 - 748"},"PeriodicalIF":2.3000,"publicationDate":"2024-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Sol-Gel Science and Technology","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s10971-024-06656-7","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 0

Abstract

The immobilization of Candida antarctica lipase B (CALB) within xerogels synthesized through the sol-gel method was investigated, employing the ionic liquid 1-octyl-3-methylimidazolium bromide (C8MI.Br) as an additive to enhance enzymatic performance. The optimization of enzyme mass and ionic liquid concentration, using a central composite experimental design, identified optimal conditions of 0.27 g/mL enzyme and 1.53% ionic liquid, yielding a maximum total esterification activity exceeding 500 U. Structural characterization, including BET surface area analysis and X-ray diffraction, confirmed the formation of a porous, amorphous matrix conducive to enzyme stability and activity. The incorporation of the ionic liquid significantly enhanced the xerogels’ thermal and operational stability. Residual esterification activity was maintained at approximately 80% after 100 days under refrigeration, and the xerogels exhibited reusability for up to eight catalytic cycles with residual activity above 50%. Furthermore, thermal stability assessments demonstrated superior resistance of the immobilized enzyme to elevated temperatures compared to its free counterpart. This study underscores the critical role of ionic liquids as additives, facilitating the formation of structurally optimized xerogels while preserving enzyme activity and stability. The findings suggest significant potential for industrial biocatalytic processes, offering a sustainable and efficient approach to enzyme immobilization for applications requiring enhanced catalytic performance and longevity.

Graphical Abstract

Abstract Image

离子液体添加剂在干凝胶中固定化南极假丝酵母脂肪酶的优化:增强酯化活性和热稳定性
以离子液体1-辛烷基-3-甲基咪唑溴(C8MI.Br)为添加剂,研究了溶胶-凝胶法合成的南极念珠菌脂肪酶B (CALB)在干凝胶中的固定化效果。优化酶质量和离子液体浓度,采用中心复合实验设计,确定酶质量为0.27 g/mL,离子液体浓度为1.53%的最佳条件,最大总酯化活性超过500 u。结构表征,包括BET表面积分析和x射线衍射,证实形成有利于酶稳定性和活性的多孔无定形基质。离子液体的加入显著提高了干凝胶的热稳定性和操作稳定性。在冷藏100天后,剩余酯化活性保持在80%左右,干凝胶可重复使用多达8次催化循环,剩余活性超过50%。此外,热稳定性评估表明,与游离酶相比,固定化酶对高温的抗性更强。这项研究强调了离子液体作为添加剂的关键作用,它有助于形成结构优化的干凝胶,同时保持酶的活性和稳定性。研究结果表明,工业生物催化工艺具有巨大的潜力,为需要提高催化性能和寿命的应用提供了一种可持续和有效的酶固定化方法。图形抽象
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Sol-Gel Science and Technology
Journal of Sol-Gel Science and Technology 工程技术-材料科学:硅酸盐
CiteScore
4.70
自引率
4.00%
发文量
280
审稿时长
2.1 months
期刊介绍: The primary objective of the Journal of Sol-Gel Science and Technology (JSST), the official journal of the International Sol-Gel Society, is to provide an international forum for the dissemination of scientific, technological, and general knowledge about materials processed by chemical nanotechnologies known as the "sol-gel" process. The materials of interest include gels, gel-derived glasses, ceramics in form of nano- and micro-powders, bulk, fibres, thin films and coatings as well as more recent materials such as hybrid organic-inorganic materials and composites. Such materials exhibit a wide range of optical, electronic, magnetic, chemical, environmental, and biomedical properties and functionalities. Methods for producing sol-gel-derived materials and the industrial uses of these materials are also of great interest.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信