Journal of Sol-Gel Science and Technology最新文献

筛选
英文 中文
Foeniculum Vulgare leaf extract loaded synthesis of silver nanoparticles in different volume ratios for antimicrobial and antioxidant activities: Comparative study of composition 用不同体积比的枸杞叶提取物合成银纳米粒子,用于抗菌和抗氧化:成分比较研究
IF 2.3 4区 材料科学
Journal of Sol-Gel Science and Technology Pub Date : 2024-08-16 DOI: 10.1007/s10971-024-06476-9
Eneyew Tilahun Bekele, Fasika Dereje Ambecha, C. R. Ravikumar, Taymour A. Hamdalla, H. C. Ananda Murthy, Defaru Negera Duke
{"title":"Foeniculum Vulgare leaf extract loaded synthesis of silver nanoparticles in different volume ratios for antimicrobial and antioxidant activities: Comparative study of composition","authors":"Eneyew Tilahun Bekele,&nbsp;Fasika Dereje Ambecha,&nbsp;C. R. Ravikumar,&nbsp;Taymour A. Hamdalla,&nbsp;H. C. Ananda Murthy,&nbsp;Defaru Negera Duke","doi":"10.1007/s10971-024-06476-9","DOIUrl":"10.1007/s10971-024-06476-9","url":null,"abstract":"<div><p>The current world is exposed to immense classes of challenges, of which antimicrobial-caused infectious diseases have been ranked the third killer disease due to their high resistance capability. Oxidative stress is also the other problem faced by the current world. In the current study, a leaf of <i>Foeniculum Vulgare</i> was employed for the synthesis of silver nanoparticles (Ag NPs) within the 1:3, 1:1, and 3:1 compositions using 0.1 M of AgNO<sub>3</sub>. The calculated average crystalline size from X-ray diffraction (XRD) was found to be 12.6, 13.7, and 21.6 nm for the 1:3, 1:1, and 3:1 volume ratios, respectively. Scanning electron microscope coupled with energy dispersive spectroscopy (SEM-EDS) analysis depicts the quasi-spherical shape with an intense Ag peak at around 3.00 eV. Transmission electron microscope coupled with high-resolution transmission microscope with surface area electron diffraction pattern (TEM-HRTEM with SAED) showed spherical shaped Ag NPs. The electronic bandgap energy was calculated as 3.1, 3.2, and 3.3 eV for the 1:1, 3:1, and 1:3 volume compositions, respectively. Ag NPs show 13.5, 12.5, and 11.0 mm zones of inhibition for the 1:3, 1:1, and 3:1 ratios, respectively. The antifungal activity was found to be 16.9, 11.2, and 10.5 mm for the 3:1, 1:3 and 1:1 ratios, respectively. Lastly, the antioxidant activity was estimated to be 42.4, 28.94, and 27.39% RSA for the 1:1, 3:1, and 1:3 volume ratios respectively. All the ratios of Ag NPs showed promised antimicrobial and antioxidant activity in the presence of 2, 2-Diphenyl-1-picrylhydrazyl (DPPH) due to the enhanced generation of reactive oxygen species (ROS).</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":664,"journal":{"name":"Journal of Sol-Gel Science and Technology","volume":"112 1","pages":"112 - 126"},"PeriodicalIF":2.3,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142225056","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Unlocking the photo-Fenton potential of novel magnetically separable sulfur doped g-C3N4/CoFe2O4 Z-scheme heterojunction systems towards tetracycline removal 挖掘新型磁性可分离掺硫 g-C3N4/CoFe2O4 Z 型异质结系统在去除四环素方面的光-芬顿潜力
IF 2.3 4区 材料科学
Journal of Sol-Gel Science and Technology Pub Date : 2024-08-15 DOI: 10.1007/s10971-024-06509-3
Twinkle Garg,  Movikiran,  Nitansh, Simranjit Kaur, Bhupender Singh, Sonal Singhal
{"title":"Unlocking the photo-Fenton potential of novel magnetically separable sulfur doped g-C3N4/CoFe2O4 Z-scheme heterojunction systems towards tetracycline removal","authors":"Twinkle Garg,&nbsp; Movikiran,&nbsp; Nitansh,&nbsp;Simranjit Kaur,&nbsp;Bhupender Singh,&nbsp;Sonal Singhal","doi":"10.1007/s10971-024-06509-3","DOIUrl":"10.1007/s10971-024-06509-3","url":null,"abstract":"<p>The increasing presence of antibiotics in water sources has become a major environmental concern. In this regard, designing of new photocatalysts possessing high visible light response and pertinent redox potentials are prerequisites. Herein, magnetically recoverable sulfur doped g-C<sub>3</sub>N<sub>4</sub> (SCN)@CoFe<sub>2</sub>O<sub>4</sub> (SCNCoFe) Z-scheme heterostructures were successfully fabricated by employing simple calcination route in which CoFe<sub>2</sub>O<sub>4</sub> nanoparticles were allowed to grow over SCN nanosheets. The prepared heterostructures displayed highly efficient photocatalytic removal of tetracyclines i.e., tetracycline (TC) and minocycline (MC), SCNCoFe-20 showed the highest degradation efficiency, with around 94% for both TC and MC within 120 s of visible light irradiation. The mineralization efficacy analysis using total organic carbon removal % validated the practicality of proposed method towards removal of TC and MC from aquatic environment. Photoluminescence and radical quenching studies revealed the enhancement in H<sub>2</sub>O<sub>2</sub> assisted photocatalytic degradation of TC and MC via Z-scheme charge transport, which comprehends the substantial synergy effect between photocatalysis and Fenton mechanism. Overall, this work provides a new insight into development of Z-scheme based heterostructures for antibiotics elimination from wastewater.</p>","PeriodicalId":664,"journal":{"name":"Journal of Sol-Gel Science and Technology","volume":"112 1","pages":"94 - 111"},"PeriodicalIF":2.3,"publicationDate":"2024-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142225055","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
ZnO-Ag/SiO2 blue light blocking films prepared at relatively low temperature 在相对较低温度下制备的 ZnO-Ag/SiO2 阻蓝光薄膜
IF 2.3 4区 材料科学
Journal of Sol-Gel Science and Technology Pub Date : 2024-08-14 DOI: 10.1007/s10971-024-06506-6
Xingyang Wu, Weidong Qiao, Jiaqi Yu, Hongdong Wang, Jianhua Zhang
{"title":"ZnO-Ag/SiO2 blue light blocking films prepared at relatively low temperature","authors":"Xingyang Wu,&nbsp;Weidong Qiao,&nbsp;Jiaqi Yu,&nbsp;Hongdong Wang,&nbsp;Jianhua Zhang","doi":"10.1007/s10971-024-06506-6","DOIUrl":"10.1007/s10971-024-06506-6","url":null,"abstract":"<div><p>With the increasing application of display and illumination devices, the injury of blue light to human eyes have attracted more and more attention. The current absorptive anti-blue light films require high preparation temperatures. This study prepared ZnO-Ag nanofilms by sol–gel method at relatively low temperature, 250 °C. The films were further enhanced with SiO<sub>2</sub> protective layer under 200 °C to improve the mechanical properties and stability, and the transmittance was investigated. The results showed that the films blocked 50.4% of blue light at wavelengths of 415–455 nm while maintained an impressive average transmittance of 98% for visible light in the range of 500–800 nm. The films had no visual effect on the display quality and the color rendering index increased only from 80.3 to 83.4, but it reduced 25% of blue light-weighted irradiance. Additionally, the films exhibited a high stability when exposed to a high temperature and humid environment (85 °C and 85% RH). Rubbing with a Teflon ball at a load of 0.5 N and a linear speed of 80 mm/min for 30 min did not show significant damage. Finally, the damage to epithelial cells exposed to blue light in the presence of the developed film was greatly alleviated.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":664,"journal":{"name":"Journal of Sol-Gel Science and Technology","volume":"112 1","pages":"84 - 93"},"PeriodicalIF":2.3,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142225057","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Well-designed submicron rutile pigment heterophase junction photocatalyst via sol-gel method for organic pollutants removal 通过溶胶-凝胶法精心设计的亚微米级金红石色素异相结光催化剂用于去除有机污染物
IF 2.3 4区 材料科学
Journal of Sol-Gel Science and Technology Pub Date : 2024-08-13 DOI: 10.1007/s10971-024-06516-4
Jiarong Ma, Lijuan Zhang, Hao Ding, Sijia Sun, Yu Tu, Jian Zheng, Wei Li
{"title":"Well-designed submicron rutile pigment heterophase junction photocatalyst via sol-gel method for organic pollutants removal","authors":"Jiarong Ma,&nbsp;Lijuan Zhang,&nbsp;Hao Ding,&nbsp;Sijia Sun,&nbsp;Yu Tu,&nbsp;Jian Zheng,&nbsp;Wei Li","doi":"10.1007/s10971-024-06516-4","DOIUrl":"10.1007/s10971-024-06516-4","url":null,"abstract":"<div><p>Nano TiO<sub>2</sub> is an acclaimed photocatalyst, widely used in water treatment due to its remarkable performance. However, challenges in real production, such as the easy recombination of photogenerated carriers and recycling difficulties, limit its application. Heterojunction photocatalysts, with high efficiency of photogenerated carrier separation and large light absorption range, show great potential for efficient water pollution treatment. In this paper, a composite photocatalyst (ART-550) with a heterophase junction structure was developed using industrial submicron rutile TiO<sub>2</sub> pigment as the carrier. This composite demonstrated excellent performance in the photocatalytic degradation of sulfadiazine, maintaining its performance over five cycles. Furthermore, it effectively degraded various representative organic pollutants present in water bodies. The construction of a heterophase junction boosted the efficient separation of photo-generated carriers, enabling more active species to participate in the reaction and thus enhancing the photocatalytic degradation performance. Additionally, the strong interfacial binding ensured the stability of the photocatalytic performance of ART-550. This research introduces a new strategy to broaden the application field of submicron rutile and produce nano-titanium dioxide catalysts that are easily accessible, scalable, and highly applicable. It offers promising prospects for advancing water treatment technologies.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":664,"journal":{"name":"Journal of Sol-Gel Science and Technology","volume":"112 1","pages":"216 - 229"},"PeriodicalIF":2.3,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142195981","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Plastic deformation and heat-enabled structural recovery of monolithic silica aerogels 整体二氧化硅气凝胶的塑性变形和受热结构恢复
IF 2.3 4区 材料科学
Journal of Sol-Gel Science and Technology Pub Date : 2024-08-13 DOI: 10.1007/s10971-024-06494-7
Julien Gonthier, Ernesto Scoppola, Aleksander Gurlo, Peter Fratzl, Wolfgang Wagermaier
{"title":"Plastic deformation and heat-enabled structural recovery of monolithic silica aerogels","authors":"Julien Gonthier,&nbsp;Ernesto Scoppola,&nbsp;Aleksander Gurlo,&nbsp;Peter Fratzl,&nbsp;Wolfgang Wagermaier","doi":"10.1007/s10971-024-06494-7","DOIUrl":"10.1007/s10971-024-06494-7","url":null,"abstract":"<div><p>Drying shrinkage during ambient pressure drying of silica gels is made reversible by preventing condensation reactions of surface silanol groups via surface modification. This partial recovery of the gel volume and structure is referred to as the spring-back effect (SBE) and enables the production of monolithic silica aerogels by evaporative drying. The SBE is sometimes completed by annealing at mild temperatures. Similarities between drying-related deformations and deformations induced by mechanical stimuli suggest analogous underlying mechanisms. While the causes of drying shrinkage are relatively well-known, it remains unclear how the relaxation of the structure by drying and annealing occurs across the different length scales. Here we show a complete structural recovery of silica aerogels at the macro- and nano-scale enabled by annealing. We propose that residual deformations after drying and mechanical compression are caused by the entanglement of silica clusters that can be unraveled by annealing at 230 °C. The deformation under loading is interpreted as two different re-arrangement mechanisms for dry and annealed gels, by the sliding of the silica clusters along the loading direction and by the compression of large pores beyond the fractal structure, respectively. Our results demonstrate how the shape and structure of silica aerogels can be restored and controlled by thermal activation, broadening the various applications of these materials. We also emphasize how tuning silica gels to promote a two-step SBE by annealing can pave the way toward the production of larger monolithic aerogels by APD.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":664,"journal":{"name":"Journal of Sol-Gel Science and Technology","volume":"111 3","pages":"1005 - 1020"},"PeriodicalIF":2.3,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10971-024-06494-7.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142195980","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hybrid Polyvinyl Alcohol-Silica Antibacterial Nanofiber Fabricated by Combined Sol-Gel and Electrospinning Techniques 通过溶胶-凝胶和电纺丝联合技术制备的聚乙烯醇-二氧化硅混合抗菌纳米纤维
IF 2.3 4区 材料科学
Journal of Sol-Gel Science and Technology Pub Date : 2024-08-11 DOI: 10.1007/s10971-024-06510-w
Khadija El Kalaaoui, Aicha Boukhriss, Oumaima Bili, Mohamed Ait Chaoui, Sanaa Majid, Mohamed El Hajaji, Said Gmouh
{"title":"Hybrid Polyvinyl Alcohol-Silica Antibacterial Nanofiber Fabricated by Combined Sol-Gel and Electrospinning Techniques","authors":"Khadija El Kalaaoui,&nbsp;Aicha Boukhriss,&nbsp;Oumaima Bili,&nbsp;Mohamed Ait Chaoui,&nbsp;Sanaa Majid,&nbsp;Mohamed El Hajaji,&nbsp;Said Gmouh","doi":"10.1007/s10971-024-06510-w","DOIUrl":"10.1007/s10971-024-06510-w","url":null,"abstract":"<div><p>Organic-inorganic hybrids are valuable due to their combined properties. This study fabricated polymer-silica hybrid nanofibers with antibacterial properties using silica and polyvinyl alcohol (PVA) through sol-gel and electrospinning methods. The nanofibers, incorporating chloropropyltriethoxysilane (CPTS) and Benzalkonium chloride (BAC), were analyzed for their morphology, chemical composition, mechanical properties, thermal properties, and antibacterial activity. Optimal characteristics in fibrous structure, mechanical strength, and antibacterial efficiency were achieved with a blended 8% wt PVA. Sample H, containing 1% BAC, showed significant bacterial growth inhibition (20 mm for Staphylococcus aureus and 9.2 mm for Escherichia coli), along with enhanced thermal stability (260.41 °C) and tensile strength (12.4 MPa). This study demonstrates the potential of electrospinning in creating advanced hybrid nanofibers with diverse applications in the medical field.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":664,"journal":{"name":"Journal of Sol-Gel Science and Technology","volume":"112 1","pages":"69 - 83"},"PeriodicalIF":2.3,"publicationDate":"2024-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141943759","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Oil resistivity of fluorine-free foams stabilized by silica nanoparticles and mixture of silicone and hydrocarbon surfactants 用纳米二氧化硅颗粒及有机硅和碳氢化合物表面活性剂混合物稳定的无氟泡沫的耐油性能
IF 2.3 4区 材料科学
Journal of Sol-Gel Science and Technology Pub Date : 2024-08-09 DOI: 10.1007/s10971-024-06503-9
Youjie Sheng, Die Hu, Wenzhi Ma, Qian Zhao
{"title":"Oil resistivity of fluorine-free foams stabilized by silica nanoparticles and mixture of silicone and hydrocarbon surfactants","authors":"Youjie Sheng,&nbsp;Die Hu,&nbsp;Wenzhi Ma,&nbsp;Qian Zhao","doi":"10.1007/s10971-024-06503-9","DOIUrl":"10.1007/s10971-024-06503-9","url":null,"abstract":"<p>This study aims at exploring properties of fluorine-free foams co-stabilized by nanoparticles (NPs) and surfactant. The mixed dispersion liquids composed of silica NPs, nonionic hydrocarbon surfactant (APG-0810), and organosilicon surfactant (CoatOsil-77) was prepared. The NP-intensified foams under the action of n-heptane (flammable liquid) were focused by analyzing aggregation behavior of surfactants, initial foaming height, foams drainage and decay, and single vertical film stability of the mixed dispersion liquids. The findings show that the presence of surfactants improves surface activity of water obviously. After adding NPs, the interactions between surfactant molecules are destroyed but new aggregates formed. Foaming ability decreases but stability increases significantly with increasing NP concentration. After n-heptane is added, intensified interactions exist among surfactant molecules, NPs, and oil droplet, promoting formation of some larger aggregates and increasing the surface tension and viscosity but decreasing the conductivity and foaming ability. In addition, the presence of n-heptane accelerates foam drainage and volume decay and thinning process of the vertical liquid film. NPs with an appropriate concentration can improve foaming ability, foam stability, and the corresponding oil resistivity of foam. This study can provide theoretical guidance for the development of new fluorine-free foams used for liquid fuel fire.</p>","PeriodicalId":664,"journal":{"name":"Journal of Sol-Gel Science and Technology","volume":"112 1","pages":"59 - 68"},"PeriodicalIF":2.3,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141924613","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Study the influence of Ag+ nanoparticles on the surface of the Sr1-xAgxFeO3-δ perovskite on optical, magnetic and antibacterial properties 研究 Sr1-xAgxFeO3-δ 包晶表面的 Ag+ 纳米粒子对光学、磁学和抗菌特性的影响
IF 2.3 4区 材料科学
Journal of Sol-Gel Science and Technology Pub Date : 2024-08-08 DOI: 10.1007/s10971-024-06487-6
E. K. Abdel-Khalek, Abdullah H. Alluhayb, Alaa M. Younis, E. A. Mohamed
{"title":"Study the influence of Ag+ nanoparticles on the surface of the Sr1-xAgxFeO3-δ perovskite on optical, magnetic and antibacterial properties","authors":"E. K. Abdel-Khalek,&nbsp;Abdullah H. Alluhayb,&nbsp;Alaa M. Younis,&nbsp;E. A. Mohamed","doi":"10.1007/s10971-024-06487-6","DOIUrl":"10.1007/s10971-024-06487-6","url":null,"abstract":"<div><p>Recently, we produced low cost SrFeO<sub>3-δ</sub> perovskite with antibacterial properties. In this study to improve the antibacterial properties of SrFeO<sub>3-δ</sub> perovskite, we doped it with silver. Ag<sup>+</sup> nanoparticles on the surface of the Sr<sub>1-x</sub>Ag<sub>x</sub>FeO<sub>3-δ</sub> perovskite samples were prepared by sol-gel method. Structural properties of these samples were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), selected area electron diffraction (SAED), high-resolution TEM (HR-TEM), EDS elemental mapping and Fourier transform infrared spectrometer (FT-IR). These techniques confirmed the presence of small amount of cubic Ag spherical nanoparticles on the surface of the cubic Sr<sub>1-x</sub>Ag<sub>x</sub>FeO<sub>3-δ</sub> perovskite structure. Further, X-ray photoelectron spectroscopy (XPS) for these samples revealed the presence of Ag<sup>1+</sup> ions, oxygen vacancies and mixed valence states of Fe ions on the surface of the samples. The energy band gap of these samples was estimated using Kubelka–Munk equation and its value increased with increasing Ag up to x = 0.10. Additionally, Magnetic hysteresis (M − H) loops revealed that these samples displayed antiferromagnetic behavior with a small amount of ferromagnetic order. Finally, the antibacterial properties of these samples revealed that the antimicrobial activities were improved with increasing Ag (x = 0.10). Our results showed that Ag<sup>+</sup> nanoparticles on the surface of the Sr<sub>1-x</sub>Ag<sub>x</sub>FeO<sub>3-δ</sub> perovskite samples are a promising antimicrobial agent.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":664,"journal":{"name":"Journal of Sol-Gel Science and Technology","volume":"112 1","pages":"44 - 58"},"PeriodicalIF":2.3,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10971-024-06487-6.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141927781","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Unveiling Bi-functional potential of ZnMoO4-enriched nanoflakes modified electrodes for efficient photocatalysis and supercapacitors 揭示富含 ZnMoO4 的纳米片修饰电极在高效光催化和超级电容器方面的双功能潜力
IF 2.3 4区 材料科学
Journal of Sol-Gel Science and Technology Pub Date : 2024-08-07 DOI: 10.1007/s10971-024-06500-y
Sufyan Ashraf, Zeshan Ali Sandhu, Muhammad Asam Raza, Ali Haider Bhalli, Muhammad Hamayun, Adnan Ashraf, Abdullah G. Al-Sehemi
{"title":"Unveiling Bi-functional potential of ZnMoO4-enriched nanoflakes modified electrodes for efficient photocatalysis and supercapacitors","authors":"Sufyan Ashraf,&nbsp;Zeshan Ali Sandhu,&nbsp;Muhammad Asam Raza,&nbsp;Ali Haider Bhalli,&nbsp;Muhammad Hamayun,&nbsp;Adnan Ashraf,&nbsp;Abdullah G. Al-Sehemi","doi":"10.1007/s10971-024-06500-y","DOIUrl":"10.1007/s10971-024-06500-y","url":null,"abstract":"<div><p>The sol-gel method was used to synthesize pure ZnO and MoO<sub>4</sub>@ZnO nanostructures for dual functionality in supercapacitors and photocatalysis. The material properties were examined using photoluminescence spectroscopy (PL), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction spectroscopy (XRD), scanning electron microscopy (SEM), and energy dispersive spectroscopy (EDX). A PL study showed the presence of an intense peak centering approximately around 405 nm, which is primarily due to the near-band edge emission of ZnO excitonic recombination. XRD confirmed the formation of the ZnMoO<sub>4</sub> crystal system. The SEM showed uniformed nano-flakes which was validated by EDX analysis having typical peaks of Zn, O, and Mo. The synthesized materials were evaluated for bi-functional application, including energy storage and photocatalytic degradation of methylene blue (MB) under solar irradiation. The 5% MoO<sub>4</sub>@ZnO nanomaterials showed uniform nanoflakes morphology with remarkable photocatalytic as well as electrochemical excellence. Notably, the 5% MoO<sub>4</sub>@ZnO nanomaterial degraded MB about 90.02% within 200 min. Galvanostatic charge discharge (GCD) exhibited an outstanding specific capacitance of 1026 F/g at 1 A/g for 5% MoO<sub>4</sub>@ZnO. The columbic efficiency of the 5% MoO<sub>4</sub>@ZnO electrode material was assessed until 2000 cycles, that retains its stability about 87%. The cyclic voltammetry was also assessed for the calculation of specific capacitance and energy density. The 5% MoO<sub>4</sub>@ZnO depicted excellent capacitance and energy density about 915.62 F/g and 53.72 Wh/kg respectively. This study showed that 5% MoO<sub>4</sub>@ZnO is a suitable candidate with the exceptional dual function that can be employed for the development of next-generation energy storage and photocatalysis.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":664,"journal":{"name":"Journal of Sol-Gel Science and Technology","volume":"112 1","pages":"25 - 43"},"PeriodicalIF":2.3,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141943827","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Zn-doped manganese tetroxide/graphene oxide cathode materials for high-performance aqueous zinc-ion battery 用于高性能水性锌离子电池的掺锌四氧化三锰/氧化石墨烯阴极材料
IF 2.3 4区 材料科学
Journal of Sol-Gel Science and Technology Pub Date : 2024-08-06 DOI: 10.1007/s10971-024-06499-2
Linheng Ge, Hong Zhang, Zirui Wang, Qingli Gao, Manman Ren, Xiaoxia Cai, Qinze Liu, Weiliang Liu, Jinshui Yao
{"title":"Zn-doped manganese tetroxide/graphene oxide cathode materials for high-performance aqueous zinc-ion battery","authors":"Linheng Ge,&nbsp;Hong Zhang,&nbsp;Zirui Wang,&nbsp;Qingli Gao,&nbsp;Manman Ren,&nbsp;Xiaoxia Cai,&nbsp;Qinze Liu,&nbsp;Weiliang Liu,&nbsp;Jinshui Yao","doi":"10.1007/s10971-024-06499-2","DOIUrl":"10.1007/s10971-024-06499-2","url":null,"abstract":"<div><p>Due to its abundant zinc resources, high safety and low cost, aqueous zinc-ion batteries (AZIBs) are considered one of the most interesting lithium-ion battery replacement technologies. Herein, a novel Zn-doped cathode material is achieved via pre-intercalation of Zn<sup>2+</sup> into the prepared manganese tetroxide (Mn<sub>3</sub>O<sub>4</sub>)/graphene oxide (GO). The pre-intercalation of Zn<sup>2+</sup> effectively increases the lattice spacing of Mn<sub>3</sub>O<sub>4</sub> and reduces the barrier of insertion/extraction of Zn<sup>2+</sup>, thus improving the kinetic properties of the material. Meanwhile, the conductive carbon skeleton GO successfully combines with polyethyleneimine and Mn<sub>3</sub>O<sub>4</sub>, which can expand electron and ion conductivity and avoid chemical bulk change. This unique structure enables the Zn-doped cathode a reversible specific capacity with excellent performance (170 mAh g<sup>−1</sup> at 200 mA g<sup>−1</sup>). Furthermore, the diffusion coefficient of the Zn-doped cathode is 10<sup>−9</sup>–10<sup>−10</sup>cm<sup>−2</sup> s<sup>−1</sup>. Therefore, this study introduces a viable approach for the practical implementation of advanced electrode materials in AZIBs applications.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":664,"journal":{"name":"Journal of Sol-Gel Science and Technology","volume":"112 1","pages":"15 - 24"},"PeriodicalIF":2.3,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141943760","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信