{"title":"以白底藻黏液为模板合成铁斛功能化羟基磷灰石纳米颗粒的抗菌性能","authors":"Sirilak Kamonwannasit, Orrasa Prasitnok, Khongvit Prasitnok, Pongtanawat Khemthong, Saran Youngjan, Teera Butburee, Pantita Promsrikaew, Nanthicha Buahongsa, Jiyapa Sripirom, Agarat Kamcharoen, Piaw Phatai","doi":"10.1007/s10971-025-06889-0","DOIUrl":null,"url":null,"abstract":"<div><p>This study investigates the physicochemical properties and antibacterial activity of hydroxyapatite (HA) nanoparticles synthesized using <i>Basella alba</i> mucilage (BAM) as a natural template and coated with <i>Stephania pierrei</i> (<i>S. pierrei</i>) extract. HA composites were prepared via the sol-gel method with varying BAM concentrations (0–25 wt%) to optimize material properties. <i>S. pierrei</i> tuber and leaf extracts were then incorporated, forming functionalized <i>S. pierrei</i>/BAM-HA materials. Characterization via X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, transmission electron microscopy (TEM), and N<sub>2</sub> adsorption/desorption confirmed the formation of biphasic calcium phosphate structures with enhanced surface area and reduced particle sizes. The 5 wt% BAM composite exhibited the highest surface area (17.59 m<sup>2</sup>/g) and smallest particle size (6.57 nm). Antibacterial activity was evaluated against <i>Pseudomonas aeruginosa</i>, <i>Bacillus cereus</i>, <i>Staphylococcus aureus</i>, and <i>Bacillus subtilis</i> using the agar well diffusion method. The <i>S. pierrei</i>/BAM-HA composites showed selective antibacterial effects, particularly against <i>Pseudomonas aeruginosa</i> and <i>Bacillus cereus</i>. Notably, 4.0<i>S. pierrei</i>-L/BAM-HA exhibited the strongest activity against <i>Bacillus cereus</i> (MIC and MBC: 4 mg/mL). This research highlights the potential of <i>S. pierrei</i>/BAM-HA composites as antibacterial coatings for implants and bone tissue engineering, while suggesting that further modifications may be needed to enhance antifungal properties.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":664,"journal":{"name":"Journal of Sol-Gel Science and Technology","volume":"115 3","pages":"1795 - 1811"},"PeriodicalIF":3.2000,"publicationDate":"2025-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Antibacterial Performance of Stephania pierrei-Functionalized Hydroxyapatite Nanoparticles Synthesized Using Basella alba Mucilage as a Template\",\"authors\":\"Sirilak Kamonwannasit, Orrasa Prasitnok, Khongvit Prasitnok, Pongtanawat Khemthong, Saran Youngjan, Teera Butburee, Pantita Promsrikaew, Nanthicha Buahongsa, Jiyapa Sripirom, Agarat Kamcharoen, Piaw Phatai\",\"doi\":\"10.1007/s10971-025-06889-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This study investigates the physicochemical properties and antibacterial activity of hydroxyapatite (HA) nanoparticles synthesized using <i>Basella alba</i> mucilage (BAM) as a natural template and coated with <i>Stephania pierrei</i> (<i>S. pierrei</i>) extract. HA composites were prepared via the sol-gel method with varying BAM concentrations (0–25 wt%) to optimize material properties. <i>S. pierrei</i> tuber and leaf extracts were then incorporated, forming functionalized <i>S. pierrei</i>/BAM-HA materials. Characterization via X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, transmission electron microscopy (TEM), and N<sub>2</sub> adsorption/desorption confirmed the formation of biphasic calcium phosphate structures with enhanced surface area and reduced particle sizes. The 5 wt% BAM composite exhibited the highest surface area (17.59 m<sup>2</sup>/g) and smallest particle size (6.57 nm). Antibacterial activity was evaluated against <i>Pseudomonas aeruginosa</i>, <i>Bacillus cereus</i>, <i>Staphylococcus aureus</i>, and <i>Bacillus subtilis</i> using the agar well diffusion method. The <i>S. pierrei</i>/BAM-HA composites showed selective antibacterial effects, particularly against <i>Pseudomonas aeruginosa</i> and <i>Bacillus cereus</i>. Notably, 4.0<i>S. pierrei</i>-L/BAM-HA exhibited the strongest activity against <i>Bacillus cereus</i> (MIC and MBC: 4 mg/mL). This research highlights the potential of <i>S. pierrei</i>/BAM-HA composites as antibacterial coatings for implants and bone tissue engineering, while suggesting that further modifications may be needed to enhance antifungal properties.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":664,\"journal\":{\"name\":\"Journal of Sol-Gel Science and Technology\",\"volume\":\"115 3\",\"pages\":\"1795 - 1811\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-08-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Sol-Gel Science and Technology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10971-025-06889-0\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, CERAMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Sol-Gel Science and Technology","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s10971-025-06889-0","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
Antibacterial Performance of Stephania pierrei-Functionalized Hydroxyapatite Nanoparticles Synthesized Using Basella alba Mucilage as a Template
This study investigates the physicochemical properties and antibacterial activity of hydroxyapatite (HA) nanoparticles synthesized using Basella alba mucilage (BAM) as a natural template and coated with Stephania pierrei (S. pierrei) extract. HA composites were prepared via the sol-gel method with varying BAM concentrations (0–25 wt%) to optimize material properties. S. pierrei tuber and leaf extracts were then incorporated, forming functionalized S. pierrei/BAM-HA materials. Characterization via X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, transmission electron microscopy (TEM), and N2 adsorption/desorption confirmed the formation of biphasic calcium phosphate structures with enhanced surface area and reduced particle sizes. The 5 wt% BAM composite exhibited the highest surface area (17.59 m2/g) and smallest particle size (6.57 nm). Antibacterial activity was evaluated against Pseudomonas aeruginosa, Bacillus cereus, Staphylococcus aureus, and Bacillus subtilis using the agar well diffusion method. The S. pierrei/BAM-HA composites showed selective antibacterial effects, particularly against Pseudomonas aeruginosa and Bacillus cereus. Notably, 4.0S. pierrei-L/BAM-HA exhibited the strongest activity against Bacillus cereus (MIC and MBC: 4 mg/mL). This research highlights the potential of S. pierrei/BAM-HA composites as antibacterial coatings for implants and bone tissue engineering, while suggesting that further modifications may be needed to enhance antifungal properties.
期刊介绍:
The primary objective of the Journal of Sol-Gel Science and Technology (JSST), the official journal of the International Sol-Gel Society, is to provide an international forum for the dissemination of scientific, technological, and general knowledge about materials processed by chemical nanotechnologies known as the "sol-gel" process. The materials of interest include gels, gel-derived glasses, ceramics in form of nano- and micro-powders, bulk, fibres, thin films and coatings as well as more recent materials such as hybrid organic-inorganic materials and composites. Such materials exhibit a wide range of optical, electronic, magnetic, chemical, environmental, and biomedical properties and functionalities. Methods for producing sol-gel-derived materials and the industrial uses of these materials are also of great interest.