Journal of Materials Science: Materials in Medicine最新文献

筛选
英文 中文
Three-dimensional printed calcium phosphate scaffolds emulate bone microstructure to promote bone regrowth and repair 三维打印磷酸钙支架可模拟骨骼微观结构,促进骨骼再生和修复。
IF 4.2 3区 医学
Journal of Materials Science: Materials in Medicine Pub Date : 2024-09-03 DOI: 10.1007/s10856-024-06817-8
Kyohei Takase, Takahiro Niikura, Tomoaki Fukui, Yohei Kumabe, Kenichi Sawauchi, Ryo Yoshikawa, Yuya Yamamoto, Ryota Nishida, Tomoyuki Matsumoto, Ryosuke Kuroda, Keisuke Oe
{"title":"Three-dimensional printed calcium phosphate scaffolds emulate bone microstructure to promote bone regrowth and repair","authors":"Kyohei Takase,&nbsp;Takahiro Niikura,&nbsp;Tomoaki Fukui,&nbsp;Yohei Kumabe,&nbsp;Kenichi Sawauchi,&nbsp;Ryo Yoshikawa,&nbsp;Yuya Yamamoto,&nbsp;Ryota Nishida,&nbsp;Tomoyuki Matsumoto,&nbsp;Ryosuke Kuroda,&nbsp;Keisuke Oe","doi":"10.1007/s10856-024-06817-8","DOIUrl":"10.1007/s10856-024-06817-8","url":null,"abstract":"<div><p>The interconnected structures in a 3D scaffold allows the movement of cells and nutrients. Therefore, this study aimed to investigate the in-vivo bioactivity of 3D-printed β-tricalcium phosphate (β-TCP) and hydroxyapatite (HAP) scaffolds that replicate biological bone. This study included 24-week-old male New Zealand white rabbits. A cylindrical bone defect with a diameter of 4.5 mm and a depth of 8 mm was created in the lateral aspect of the distal femur. A 3D-printed scaffold was implanted in the right femur (experimental side), whereas the left femur was kept free of implantation (control side). Micro-CT analysis and histological observations of the bone defect site were conducted at 4, 8, and 12 weeks postoperatively to track the bone repair progress. No evidence of new bone tissue formation was found in the medullary cavity of the bone defect on the control side. In contrast, on the experimental side, the 3D scaffold demonstrated sufficient bioactivity, leading to the growth of new bone tissue. Over time, new bone tissue gradually extended from the periphery toward the center, a phenomenon evident in both micro-CT images and biopsy staining. In the current study, we observed that the cells involved in bone metabolism adhered, spread, and proliferated on our newly designed 3D-printed scaffold with a bone microstructure. Therefore, it is suggested that this scaffold has sufficient bioactivity to induce new bone formation and could be expected to be a more useful artificial bone than the existing version.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":647,"journal":{"name":"Journal of Materials Science: Materials in Medicine","volume":"35 1","pages":""},"PeriodicalIF":4.2,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11371849/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142118719","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
In vitro evaluation of the biocompatibility and bioactivity of a SLM-fabricated NiTi alloy with superior tensile property 对具有优异拉伸性能的 SLM 制造镍钛合金的生物相容性和生物活性进行体外评估。
IF 4.2 3区 医学
Journal of Materials Science: Materials in Medicine Pub Date : 2024-08-23 DOI: 10.1007/s10856-024-06822-x
Yu Sun, Zhihui Zhang, Qingping Liu, Luquan Ren, Jincheng Wang
{"title":"In vitro evaluation of the biocompatibility and bioactivity of a SLM-fabricated NiTi alloy with superior tensile property","authors":"Yu Sun,&nbsp;Zhihui Zhang,&nbsp;Qingping Liu,&nbsp;Luquan Ren,&nbsp;Jincheng Wang","doi":"10.1007/s10856-024-06822-x","DOIUrl":"10.1007/s10856-024-06822-x","url":null,"abstract":"<div><p>Because nickel-titanium (NiTi) alloys have unique functions, such as superelasticity, shape memory, and hysteresis similar to bone in the loading-unloading cycles of their recoverable deformations. They likely offer good bone integration, a low loosening rate, individual customization, and ease of insertion. Due to the poor processability of NITI, traditional methods cannot manufacture NiTi products with complex shapes. Orthopedic NiTi implants need to show an adequate fracture elongation of at least 8%. Additive manufacturing can be used to prepare NiTi implants with complex structures and tunable porosity. However, as previously reported, additively manufactured NiTi alloys could only exhibit a maximum tensile fracture strain of 7%. In new reports, a selective laser melting (SLM)–NiTi alloy has shown greater tensile strain (15.6%). Nevertheless, due to the unique microstructure of additive manufacturing NiTi that differs from traditional NITI, the biocompatibility of SLM-NITI manufactured by this new process requires further evaluation In this study, the effects of the improved NiTi alloy on bone marrow mesenchymal stem cell (BMSC) proliferation, adhesion, and cell viability were investigated via in vitro studies. A commercial Ti-6Al-4V alloy was studied side-by-side for comparison. Like the Ti-6Al-4V alloy, the SLM-NiTi alloy exhibited low cytotoxicity toward BMSCs and similar effect on cell adhesion or cell viability. This study demonstrates that the new SLM-NiTi alloy, which has exhibited improved mechanical properties, also displays excellent biocompatibility. Therefore, this alloy may be a superior implant material in biomedical implantation.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":647,"journal":{"name":"Journal of Materials Science: Materials in Medicine","volume":"35 1","pages":""},"PeriodicalIF":4.2,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11343964/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142034862","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
TiO2-ZnPc nanoparticles functionalized with folic acid as a target photosensitizer for photodynamic therapy against glioblastoma cells 叶酸功能化 TiO2-ZnPc 纳米粒子作为光动力疗法的靶光敏剂,用于治疗胶质母细胞瘤细胞。
IF 4.2 3区 医学
Journal of Materials Science: Materials in Medicine Pub Date : 2024-08-22 DOI: 10.1007/s10856-024-06823-w
Gustavo Jardón-Guadarrama, Ma Elena Manríquez-Ramírez, Citlali E. Rodríguez-Pérez, Araceli Díaz-Ruiz, María de los Ángeles Martínez-Cárdenas, Alfonso Mata-Bermudez, Camilo Ríos, Emma Ortiz-Islas
{"title":"TiO2-ZnPc nanoparticles functionalized with folic acid as a target photosensitizer for photodynamic therapy against glioblastoma cells","authors":"Gustavo Jardón-Guadarrama,&nbsp;Ma Elena Manríquez-Ramírez,&nbsp;Citlali E. Rodríguez-Pérez,&nbsp;Araceli Díaz-Ruiz,&nbsp;María de los Ángeles Martínez-Cárdenas,&nbsp;Alfonso Mata-Bermudez,&nbsp;Camilo Ríos,&nbsp;Emma Ortiz-Islas","doi":"10.1007/s10856-024-06823-w","DOIUrl":"10.1007/s10856-024-06823-w","url":null,"abstract":"<div><p>The use of TiO<sub>2</sub> as a photosensitizer in photodynamic therapy is limited due to TiO<sub>2</sub> generates reactive oxygen species only under UV irradiation. The TiO<sub>2</sub> surface has been modified with different functional groups to achieve activation at longer wavelengths (visible light). This work reports the synthesis, characterization, and biological toxicity assay of TiO<sub>2</sub> nanoparticles functionalized with folic acid and combined with a zinc phthalocyanine to obtain a nano-photosensitizer for its application in photodynamic therapy for glioblastoma cancer treatment. The nano-photosensitizer was prepared using the sol-gel method. Folic acid and zinc phthalocyanine were added during the hydrolysis and condensation of titanium butoxide, which was the TiO<sub>2</sub> precursor. The samples obtained were characterized by several microscopy and spectroscopy techniques. An in vitro toxicity test was performed using the MTT assay and the C6 cellular line. The results of the characterization showed that the structure of the nanoparticles corresponds mainly to the anatase phase. Successful functionalization with folic acid and an excellent combination with phthalocyanine was also achieved. Both folic acid-functionalized TiO<sub>2</sub> and phthalocyanine-functionalized TiO<sub>2</sub> had no cytotoxic effect on C6 cells (even at high concentrations) in comparison to Cis-Pt, which was very toxic to C6 cells. The materials behaved similarly to the control (untreated cells). The cell viability and light microscopy images suggest that both materials could be considered biocompatible and mildly phototoxic in these cells when activated by light.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":647,"journal":{"name":"Journal of Materials Science: Materials in Medicine","volume":"35 1","pages":""},"PeriodicalIF":4.2,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11341649/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142015956","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Preparation of composite calcium phosphate cement scaffold loaded with Hedysarum polysaccharides and its efficacy in repairing bone defects 负载 Hedysarum 多糖的复合磷酸钙水泥支架的制备及其在修复骨缺损中的功效。
IF 4.2 3区 医学
Journal of Materials Science: Materials in Medicine Pub Date : 2024-08-13 DOI: 10.1007/s10856-024-06818-7
Lianggong Zhao, Bo Wang, Shilan Feng, Huifang Wu
{"title":"Preparation of composite calcium phosphate cement scaffold loaded with Hedysarum polysaccharides and its efficacy in repairing bone defects","authors":"Lianggong Zhao,&nbsp;Bo Wang,&nbsp;Shilan Feng,&nbsp;Huifang Wu","doi":"10.1007/s10856-024-06818-7","DOIUrl":"10.1007/s10856-024-06818-7","url":null,"abstract":"<p>It’s imperative to create a more ideal biological scaffold for bone defect repair. Calcium phosphate bone cements (CPC) could be used as a scaffold. Some ingredients and osteogenic factors could be added to improve its poor mechanical properties and biological activity. As a macromolecule extracted from traditional Chinese medicine, <i>Hedysarum</i> polysaccharides (HPS) would significantly promote the osteogenic activity of bone biomaterials. Zirconium oxide and starch were added to the solid phase and citric acid was added to the liquid phase to optimize CPC. HPS was loaded onto the scaffold as an osteogenic factor, and the prepared CPS + HPS was characterized. Further, the cytocompatibility of CPS + HPS was assessed according to activity, differentiation, and calcification in neonatal rat calvarial osteoblasts, and the biosafety of CPS + HPS was evaluated according to acute toxicity, pyrogen, sensitization, and hemolysis. The success of CPS + HPS in repairing bone defects was evaluated by using a rabbit femur implantation experiment. After optimization, CPS-20-CA-5 containing 10% starch and 5% citric acid displayed the highest mechanical strength of 28.96 ± 0.03 MPa. HPS-50 was demonstrated to exert the best osteogenic effect. The combination of CPS + HPS achieved HPS-loaded CPC. Material characterization, cytocompatibility, biosafety, and femoral implantation experiments indicated that CPS + HPS possessed better pressure resistance and improved osteogenic ability in bone defect repair.CPS + HPS demonstrated effective pressure resistance and superior osteogenic ability, which may be of great significance for bone defects and bone tissue engineering to promote bone regeneration and repair.</p>","PeriodicalId":647,"journal":{"name":"Journal of Materials Science: Materials in Medicine","volume":"35 1","pages":""},"PeriodicalIF":4.2,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11322508/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141970379","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Assessment of cranial reconstruction utilizing various implant materials: finite element study 利用各种植入材料进行颅骨重建的评估:有限元研究。
IF 4.2 3区 医学
Journal of Materials Science: Materials in Medicine Pub Date : 2024-08-13 DOI: 10.1007/s10856-024-06816-9
Yomna H. Shash
{"title":"Assessment of cranial reconstruction utilizing various implant materials: finite element study","authors":"Yomna H. Shash","doi":"10.1007/s10856-024-06816-9","DOIUrl":"10.1007/s10856-024-06816-9","url":null,"abstract":"<div><p>The human head can sometimes experience impact loads that result in skull fractures or other injuries, leading to the need for a craniectomy. Cranioplasty is a procedure that involves replacing the removed portion with either autologous bone or alloplastic material. While titanium has traditionally been the preferred material for cranial implants due to its excellent properties and biocompatibility, its limitations have prompted the search for alternative materials. This research aimed to explore alternative materials to titanium for cranial implants in order to address the limitations of titanium implants and improve the performance of the cranioplasty process. A 3D model of a defective skull was reconstructed with a cranial implant, and the implant was simulated using various stiff and soft materials (such as alumina, zirconia, hydroxyapatite, zirconia-reinforced PMMA, and PMMA) as alternatives to titanium under 2000N impact forces. Alumina and zirconia implants were found to reduce stresses and strains on the skull and brain compared to titanium implants. However, PMMA implants showed potential for causing skull damage under current loading conditions. Additionally, PMMA and hydroxyapatite implants were prone to fracture. Despite these findings, none of the implants exceeded the limits for tensile and compressive stresses and strains on the brain. Zirconia-reinforced PMMA implants were also shown to reduce stresses and strains on the skull and brain compared to PMMA implants. Alumina and zirconia show promise as alternatives to titanium for the production of cranial implants. The use of alternative implant materials to titanium has the potential to enhance the success of cranial reconstruction by overcoming the limitations associated with titanium implants.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":647,"journal":{"name":"Journal of Materials Science: Materials in Medicine","volume":"35 1","pages":""},"PeriodicalIF":4.2,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11322413/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141970338","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Feasibility of using diamond-like carbon films in total joint replacements: a review 在全关节置换术中使用类金刚石碳膜的可行性:综述。
IF 4.2 3区 医学
Journal of Materials Science: Materials in Medicine Pub Date : 2024-08-13 DOI: 10.1007/s10856-024-06814-x
Anurag Roy, Annette Bennett, Lisa Pruitt
{"title":"Feasibility of using diamond-like carbon films in total joint replacements: a review","authors":"Anurag Roy,&nbsp;Annette Bennett,&nbsp;Lisa Pruitt","doi":"10.1007/s10856-024-06814-x","DOIUrl":"10.1007/s10856-024-06814-x","url":null,"abstract":"<div><p>Diamond-like Carbon (DLC) has been used as a coating material of choice for a variety of technological applications owing to its favorable bio-tribo-thermo-mechanical characteristics. Here, the possibility of bringing DLC into orthopedic joint implants is examined. With ever increasing number of patients suffering from osteoarthritis as well as with the ingress of the osteoarthritic joints’ malaise into younger and more active demographics, there is a pressing need to augment the performance and integrity of conventional total joint replacements (TJRs). Contemporary joint replacement devices use metal-on-polymer articulations to restore function to worn, damaged or diseased cartilage. The wear of polymeric components has been addressed using crosslinking and antioxidants; however, in the context of the metallic components, complications pertaining to corrosion and metal ion release inside the body still persist. Through this review article, we explore the use of DLC coatings on metallic bearing surfaces and elucidate why this technology might be a viable solution for ongoing electrochemical challenges in orthopedics. The different characteristics of DLC coatings and their feasibility in TJRs are examined through assessment of tribo-material characterization methods. A holistic characterization of the coating-substrate interface and the wear performance of such systems are discussed. As with all biomaterials used in TJRs, we need mindful consideration of potential in-vivo challenges. We present a few caveats for DLC coatings including delamination, hydrophobicity, and other conflicting as well as outdating findings in the literature. We recommend prudently exploring DLC films as potential coatings on metallic TJR components to solve the problems pertaining to wear, metal ion release, and corrosion. Ultimately, we advise bringing DLC into clinical use only after addressing all challenges and concerns outlined in this article.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":647,"journal":{"name":"Journal of Materials Science: Materials in Medicine","volume":"35 1","pages":""},"PeriodicalIF":4.2,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11322245/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141970339","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Improvement photothermal property of MoS2/Fe3O4/GNR nanocomposite in cancer treatment 改善 MoS2/Fe3O4/GNR 纳米复合材料在癌症治疗中的光热特性。
IF 4.2 3区 医学
Journal of Materials Science: Materials in Medicine Pub Date : 2024-08-13 DOI: 10.1007/s10856-024-06819-6
Behdad Shariati, Mohammad Taghi Goodarzi, Alireza Jalali, Nasrin Salehi, Majid Mozaffari
{"title":"Improvement photothermal property of MoS2/Fe3O4/GNR nanocomposite in cancer treatment","authors":"Behdad Shariati,&nbsp;Mohammad Taghi Goodarzi,&nbsp;Alireza Jalali,&nbsp;Nasrin Salehi,&nbsp;Majid Mozaffari","doi":"10.1007/s10856-024-06819-6","DOIUrl":"10.1007/s10856-024-06819-6","url":null,"abstract":"<div><p>The objective of the present study was to develop a novel molybdenum disulfide/iron oxide/gold nanorods (MoS<sub>2</sub>/Fe<sub>3</sub>O<sub>4</sub>/GNR) nanocomposite (MFG) with different concentrations of AgNO<sub>3</sub> solution (MFG1, MFG2, and MFG3) for topical doxorubicin (DOX) drug delivery. Then, these nanocomposites were synthesized and characterized by Fourier transform infrared (FTIR), Transmission electron microscopy (TEM), Dynamic light scattering (DLS), and Ultraviolet-visible (UV–Vis) spectroscopies to confirm their structural and optical properties. Cytotoxicity of samples on Hela cell was determined using MTT assay. Results indicated that nanocomposites possess little cytotoxicity without NIR laser irradiation. Also, the relative viabilities of Hela cells decreased when the concentration of AgNO<sub>3</sub> solution increased in this nanocomposite. Using NIR irradiation, the relative viabilities of Hela cells decreased when the concentration of samples increased. Acridine orange/propidium iodide (PI) staining, flow cytometry were recruited to evaluate the effect of these nanocomposites on apoptosis of Hela cells. Finally, results revealed when DOX loading increased in nanocomposite, then cell viability was decreased in it. Therefore, these properties make MFG3 nanocomposite a good candidate for photothermal therapy and drug loading.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":647,"journal":{"name":"Journal of Materials Science: Materials in Medicine","volume":"35 1","pages":""},"PeriodicalIF":4.2,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11322282/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141970340","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Prolonged retention of luliconazole nanofibers for topical mycotic condition: development, in vitro characterization and antifungal activity against Candida albicans 用于局部真菌病的氟环唑纳米纤维的长期保留:开发、体外表征和对白色念珠菌的抗真菌活性。
IF 4.2 3区 医学
Journal of Materials Science: Materials in Medicine Pub Date : 2024-08-08 DOI: 10.1007/s10856-024-06815-w
Akashkumar Doshi, Bala Prabhakar, Sarika Wairkar
{"title":"Prolonged retention of luliconazole nanofibers for topical mycotic condition: development, in vitro characterization and antifungal activity against Candida albicans","authors":"Akashkumar Doshi,&nbsp;Bala Prabhakar,&nbsp;Sarika Wairkar","doi":"10.1007/s10856-024-06815-w","DOIUrl":"10.1007/s10856-024-06815-w","url":null,"abstract":"<div><p>An antifungal agent, luliconazole, is commercially available in cream or gel form. The major limitation of these conventional formulations is less residence time at the infection site. The primary objective of this work was to develop luliconazole-loaded polyvinyl alcohol (Luz-PVA) nanofibers for mycotic skin conditions with a longer retention. Luz-PVA nanofibers were prepared by plate electrospinning and optimized for polymer concentration and process parameters. The optimized batch (Trial 5) was prepared by 10% PVA, processed at 22.4 kV applied voltage, and 14 cm plate and spinneret distance to yield thick, uniform, and peelable nanofibers film. There was no interaction observed between Luz and PVA in the FTIR study. DSC and XRD analysis showed that luliconazole was loaded into fabricated nanofibers with a reduced crystallinity. FESEM studies confirmed the smooth, defect-free mats of nanofibers. Luz-PVA nanofibers possessed a tensile strength of 21.8 N and a maximum elongation of 10.8%, representing the excellent elasticity of the scaffolds. For Luz-PVA nanofibers, the sustained and complete drug release was observed in 48 h. In antifungal activity using <i>Candida albicans</i>, the Luz-PVA nanofibers showed a greater zone of inhibition (30.55 ± 0.38 mm and 29.27 ± 0.31 mm) than marketed cream (28.06 ± 0.18 mm and 28.47 ± 0.24 mm) and pure drug (27.57 ± 0.17 mm and 27.50 ± 0.47 mm) at 1% concentration in Sabouraud dextrose agar and yeast malt agar, respectively. Therefore, Luz-PVA nanofibers exhibited good mechanical properties, longer retention time, and better antifungal activity than marketed products and, therefore, can be further examined preclinically as a potential treatment option for topical mycotic infection.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":647,"journal":{"name":"Journal of Materials Science: Materials in Medicine","volume":"35 1","pages":""},"PeriodicalIF":4.2,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11310262/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141900546","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Biomaterial Fg/P(LLA-CL) regulates macrophage polarization and recruitment of mesenchymal stem cells after endometrial injury 生物材料Fg/P(LLA-CL)可调节巨噬细胞极化和子宫内膜损伤后间充质干细胞的招募。
IF 4.2 3区 医学
Journal of Materials Science: Materials in Medicine Pub Date : 2024-07-29 DOI: 10.1007/s10856-024-06807-w
Sirui Song, Anfeng Wang, Siyu Wu, Huaifang Li, Hongbing He
{"title":"Biomaterial Fg/P(LLA-CL) regulates macrophage polarization and recruitment of mesenchymal stem cells after endometrial injury","authors":"Sirui Song,&nbsp;Anfeng Wang,&nbsp;Siyu Wu,&nbsp;Huaifang Li,&nbsp;Hongbing He","doi":"10.1007/s10856-024-06807-w","DOIUrl":"10.1007/s10856-024-06807-w","url":null,"abstract":"<div><p>The process of endometrial repair after injury involves the synergistic action of various cells including immune cells and stem cells. In this study, after combing Fibrinogen(Fg) with poly(L-lacticacid)-co-poly(ε-caprolactone)(P(LLA-CL)) by electrospinning, we placed Fg/P(LLA-CL) into the uterine cavity of endometrium-injured rats, and bioinformatic analysis revealed that Fg/P(LLA-CL) may affect inflammatory response and stem cell biological behavior. Therefore, we verified that Fg/P(LLA-CL) could inhibit the lipopolysaccharide (LPS)-stimulated macrophages from switching to the pro-inflammatory M1 phenotype in vitro. Moreover, in the rat model of endometrial injury, Fg/P(LLA-CL) effectively promoted the polarization of macrophages towards the anti-inflammatory M2 phenotype and enhanced the presence of mesenchymal stem cells at the injury site. Overall, Fg/P(LLA-CL) exhibits significant influence on macrophage polarization and stem cell behavior in endometrial injury, justifying further exploration for potential therapeutic applications in endometrial and other tissue injuries.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":647,"journal":{"name":"Journal of Materials Science: Materials in Medicine","volume":"35 1","pages":""},"PeriodicalIF":4.2,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11286705/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141787009","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Biodegradable composites with antibiotics and growth factors for dual release kinetics 含有抗生素和生长因子的生物可降解复合材料的双重释放动力学。
IF 4.2 3区 医学
Journal of Materials Science: Materials in Medicine Pub Date : 2024-07-29 DOI: 10.1007/s10856-024-06809-8
Michael Seidenstuecker, Julian Hess, Anna Baghnavi, Hagen Schmal, Diana Voigt, Hermann O. Mayr
{"title":"Biodegradable composites with antibiotics and growth factors for dual release kinetics","authors":"Michael Seidenstuecker,&nbsp;Julian Hess,&nbsp;Anna Baghnavi,&nbsp;Hagen Schmal,&nbsp;Diana Voigt,&nbsp;Hermann O. Mayr","doi":"10.1007/s10856-024-06809-8","DOIUrl":"10.1007/s10856-024-06809-8","url":null,"abstract":"<div><p>Bone infections are still a major problem in surgery. To avoid severe side effects of systemically administered antibiotics, local antibiotic therapy is increasingly being considered. Using a pressure-based method developed in our group, microporous β-TCP ceramics, which had previously been characterized, were loaded with 2% w/v alginate containing 50 mg/mL clindamycin and 10 µg/mL rhBMP-2. Release experiments were then carried out over 28 days with changes of liquid at defined times (1, 2, 3, 6, 9, 14, 21 and 28d). The released concentrations of clindamycin were determined by HPLC and those of rhBMP-2 by ELISA. Continuous release (anomalous transport) of clindamycin and uniform release (Fick’s diffusion) of BMP-2 were determined. The composites were biocompatible (live/dead, WST-I and LDH) and the released concentrations were all antimicrobially active against <i>Staph. aureus</i>. The results were very promising and clindamycin was detected in concentrations above the MIC as well as a constant rhBMP-2 release over the entire study period. Biocompatibility was also not impaired by either the antibiotic or the BMP-2. This promising approach can therefore be seen as an alternative to the common treatment with PMMA chains containing gentamycin, as the new composite is completely biodegradable and no second operation is necessary for removal or replacement.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":647,"journal":{"name":"Journal of Materials Science: Materials in Medicine","volume":"35 1","pages":""},"PeriodicalIF":4.2,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11286658/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141787008","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信