Lays Fernanda Nunes Dourado, Fernanda Aparecida Silva Vieira, Thomas Toshio Inoue, Silvia Ligorio Fialho, Lutiana Amaral de Melo, Vinicius Viana Pereira, Juliana Rios de Simoni, Matheus Soares Siman, Paulo Ferrara de Almeida Cunha, Armando da Silva Cunha Júnior
{"title":"Interlamellar keratoplasty for implantation of decellularized porcine corneal lenticule in a rabbit for corneal thickening.","authors":"Lays Fernanda Nunes Dourado, Fernanda Aparecida Silva Vieira, Thomas Toshio Inoue, Silvia Ligorio Fialho, Lutiana Amaral de Melo, Vinicius Viana Pereira, Juliana Rios de Simoni, Matheus Soares Siman, Paulo Ferrara de Almeida Cunha, Armando da Silva Cunha Júnior","doi":"10.1007/s10856-024-06845-4","DOIUrl":null,"url":null,"abstract":"<p><p>Changes in collagen orientation and distribution on the corneas lead to the development of diseases characterized by progressive thinning, such as keratoconus. Part of people diagnosed with keratoconus require a corneal graft, which has availability as a major limiting factor. In this scenario, new approaches have been tested to obtain substitute tissues. Porcine cornea has been receiving increasing attention due to its ease of obtaining, biomechanical properties similar to those of human tissue and lower antigenicity. Based on this, the objective of this study was to evaluate the biocompatibility of porcine stroma decellularized by sodium dodecyl sulfate (SDS) through interlamellar implantation in rabbit corneas. The obtained results showed that the lenticule intrastromal implantation was successfully performed and did not elicit rejection. Furthermore, the implanted stroma was able to promote an increase in the thickness of the host cornea. Microscopic analyses revealed that the tissue was well-adhered and the collagen fibrils were more aligned on its periphery. Therefore, it is concluded that the implantation of decellularized porcine stroma occurred satisfactorily and represents a promising alternative to replace human tissue.</p>","PeriodicalId":647,"journal":{"name":"Journal of Materials Science: Materials in Medicine","volume":"36 1","pages":"49"},"PeriodicalIF":4.2000,"publicationDate":"2025-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12148985/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Science: Materials in Medicine","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s10856-024-06845-4","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Changes in collagen orientation and distribution on the corneas lead to the development of diseases characterized by progressive thinning, such as keratoconus. Part of people diagnosed with keratoconus require a corneal graft, which has availability as a major limiting factor. In this scenario, new approaches have been tested to obtain substitute tissues. Porcine cornea has been receiving increasing attention due to its ease of obtaining, biomechanical properties similar to those of human tissue and lower antigenicity. Based on this, the objective of this study was to evaluate the biocompatibility of porcine stroma decellularized by sodium dodecyl sulfate (SDS) through interlamellar implantation in rabbit corneas. The obtained results showed that the lenticule intrastromal implantation was successfully performed and did not elicit rejection. Furthermore, the implanted stroma was able to promote an increase in the thickness of the host cornea. Microscopic analyses revealed that the tissue was well-adhered and the collagen fibrils were more aligned on its periphery. Therefore, it is concluded that the implantation of decellularized porcine stroma occurred satisfactorily and represents a promising alternative to replace human tissue.
期刊介绍:
The Journal of Materials Science: Materials in Medicine publishes refereed papers providing significant progress in the application of biomaterials and tissue engineering constructs as medical or dental implants, prostheses and devices. Coverage spans a wide range of topics from basic science to clinical applications, around the theme of materials in medicine and dentistry. The central element is the development of synthetic and natural materials used in orthopaedic, maxillofacial, cardiovascular, neurological, ophthalmic and dental applications. Special biomedical topics include biomaterial synthesis and characterisation, biocompatibility studies, nanomedicine, tissue engineering constructs and cell substrates, regenerative medicine, computer modelling and other advanced experimental methodologies.