Forum of Mathematics Pi最新文献

筛选
英文 中文
Degrees of maps and multiscale geometry 映射度和多尺度几何
IF 2.3 1区 数学
Forum of Mathematics Pi Pub Date : 2024-01-18 DOI: 10.1017/fmp.2023.33
Aleksandr Berdnikov, Larry Guth, Fedor Manin
{"title":"Degrees of maps and multiscale geometry","authors":"Aleksandr Berdnikov, Larry Guth, Fedor Manin","doi":"10.1017/fmp.2023.33","DOIUrl":"https://doi.org/10.1017/fmp.2023.33","url":null,"abstract":"We study the degree of an <jats:italic>L</jats:italic>-Lipschitz map between Riemannian manifolds, proving new upper bounds and constructing new examples. For instance, if <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050508623000331_inline1.png\" /> <jats:tex-math> $X_k$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> is the connected sum of <jats:italic>k</jats:italic> copies of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050508623000331_inline2.png\" /> <jats:tex-math> $mathbb CP^2$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> for <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050508623000331_inline3.png\" /> <jats:tex-math> $k ge 4$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, then we prove that the maximum degree of an <jats:italic>L</jats:italic>-Lipschitz self-map of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050508623000331_inline4.png\" /> <jats:tex-math> $X_k$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> is between <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050508623000331_inline5.png\" /> <jats:tex-math> $C_1 L^4 (log L)^{-4}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050508623000331_inline6.png\" /> <jats:tex-math> $C_2 L^4 (log L)^{-1/2}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. More generally, we divide simply connected manifolds into three topological types with three different behaviors. Each type is defined by purely topological criteria. For scalable simply connected <jats:italic>n</jats:italic>-manifolds, the maximal degree is <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050508623000331_inline7.png\" /> <jats:tex-math> $sim L^n$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. For formal but nonscalable simply connected <jats:italic>n</jats:italic>-manifolds, the maximal degree grows roughly like <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050508623000331_inline8.png\" /> <jats:tex-math> $L^n (log L)^{-theta (1)}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. And for nonformal simply connected <jats:italic>n</jats:italic>-manifolds, the maximal degree is bounded by <jats:inline-formula> <jats:alternatives> <jats:inline","PeriodicalId":56024,"journal":{"name":"Forum of Mathematics Pi","volume":"532 1","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139498374","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Smith theory and cyclic base change functoriality 斯密理论与循环基变函数性
IF 2.3 1区 数学
Forum of Mathematics Pi Pub Date : 2024-01-15 DOI: 10.1017/fmp.2023.32
Tony Feng
{"title":"Smith theory and cyclic base change functoriality","authors":"Tony Feng","doi":"10.1017/fmp.2023.32","DOIUrl":"https://doi.org/10.1017/fmp.2023.32","url":null,"abstract":"<p>Lafforgue and Genestier-Lafforgue have constructed the global and (semisimplified) local Langlands correspondences for arbitrary reductive groups over function fields. We establish various properties of these correspondences regarding functoriality for cyclic base change: For <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240112084941107-0818:S205050862300032X:S205050862300032X_inline1.png\"><span data-mathjax-type=\"texmath\"><span>$mathbf {Z}/pmathbf {Z}$</span></span></img></span></span>-extensions of global function fields, we prove the existence of base change for mod <span>p</span> automorphic forms on arbitrary reductive groups. For <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240112084941107-0818:S205050862300032X:S205050862300032X_inline2.png\"><span data-mathjax-type=\"texmath\"><span>$mathbf {Z}/pmathbf {Z}$</span></span></img></span></span>-extensions of local function fields, we construct a base change homomorphism for the mod <span>p</span> Bernstein center of any reductive group. We then use this to prove existence of local base change for mod <span>p</span> irreducible representation along <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240112084941107-0818:S205050862300032X:S205050862300032X_inline3.png\"><span data-mathjax-type=\"texmath\"><span>$mathbf {Z}/pmathbf {Z}$</span></span></img></span></span>-extensions, and that Tate cohomology realizes base change descent, verifying a function field version of a conjecture of Treumann-Venkatesh.</p><p>The proofs are based on equivariant localization arguments for the moduli spaces of shtukas. They also draw upon new tools from modular representation theory, including parity sheaves and Smith-Treumann theory. In particular, we use these to establish a categorification of the base change homomorphism for mod <span>p</span> spherical Hecke algebras, in a joint appendix with Gus Lonergan.</p>","PeriodicalId":56024,"journal":{"name":"Forum of Mathematics Pi","volume":"50 1","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139469632","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Virasoro Constraints for Toric Bundles Toric 束的 Virasoro 约束条件
IF 2.3 1区 数学
Forum of Mathematics Pi Pub Date : 2024-01-01 DOI: 10.1017/fmp.2024.2
Tom Coates, Alexander Givental, Hsian-Hua Tseng
{"title":"Virasoro Constraints for Toric Bundles","authors":"Tom Coates, Alexander Givental, Hsian-Hua Tseng","doi":"10.1017/fmp.2024.2","DOIUrl":"https://doi.org/10.1017/fmp.2024.2","url":null,"abstract":"<p>We show that the Virasoro conjecture in Gromov–Witten theory holds for the the total space of a toric bundle <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240203073427923-0125:S2050508624000027:S2050508624000027_inline1.png\"><span data-mathjax-type=\"texmath\"><span>$E to B$</span></span></img></span></span> if and only if it holds for the base <span>B</span>. The main steps are: (i) We establish a localization formula that expresses Gromov–Witten invariants of <span>E</span>, equivariant with respect to the fiberwise torus action in terms of genus-zero invariants of the toric fiber and all-genus invariants of <span>B</span>, and (ii) we pass to the nonequivariant limit in this formula, using Brown’s mirror theorem for toric bundles.</p>","PeriodicalId":56024,"journal":{"name":"Forum of Mathematics Pi","volume":"29 1","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139689992","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Random Phase Approximation for Interacting Fermi Gases in the Mean-Field Regime 平均场域中相互作用费米气体的随机相位近似法
IF 2.3 1区 数学
Forum of Mathematics Pi Pub Date : 2023-12-22 DOI: 10.1017/fmp.2023.31
Martin Ravn Christiansen, Christian Hainzl, Phan Thành Nam
{"title":"The Random Phase Approximation for Interacting Fermi Gases in the Mean-Field Regime","authors":"Martin Ravn Christiansen, Christian Hainzl, Phan Thành Nam","doi":"10.1017/fmp.2023.31","DOIUrl":"https://doi.org/10.1017/fmp.2023.31","url":null,"abstract":"We present a general approach to justify the random phase approximation for the homogeneous Fermi gas in three dimensions in the mean-field scaling regime. We consider a system of <jats:italic>N</jats:italic> fermions on a torus, interacting via a two-body repulsive potential proportional to <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050508623000318_inline1.png\" /> <jats:tex-math> $N^{-frac {1}{3}}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. In the limit <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050508623000318_inline2.png\" /> <jats:tex-math> $Nrightarrow infty $ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, we derive the exact leading order of the correlation energy and the bosonic elementary excitations of the system, which are consistent with the prediction of the random phase approximation in the physics literature.","PeriodicalId":56024,"journal":{"name":"Forum of Mathematics Pi","volume":"54 1","pages":""},"PeriodicalIF":2.3,"publicationDate":"2023-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139025552","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Global solutions for 1D cubic defocusing dispersive equations: Part I 一维三次散焦色散方程的全局解:第1部分
IF 2.3 1区 数学
Forum of Mathematics Pi Pub Date : 2023-12-04 DOI: 10.1017/fmp.2023.30
Mihaela Ifrim, Daniel Tataru
{"title":"Global solutions for 1D cubic defocusing dispersive equations: Part I","authors":"Mihaela Ifrim, Daniel Tataru","doi":"10.1017/fmp.2023.30","DOIUrl":"https://doi.org/10.1017/fmp.2023.30","url":null,"abstract":"This article is devoted to a general class of one-dimensional NLS problems with a cubic nonlinearity. The question of obtaining scattering, global in time solutions for such problems has attracted a lot of attention in recent years, and many global well-posedness results have been proved for a number of models under the assumption that the initial data are both <jats:italic>small</jats:italic> and <jats:italic>localized</jats:italic>. However, except for the completely integrable case, no such results have been known for small but not necessarily localized initial data. In this article, we introduce a new, nonperturbative method to prove global well-posedness and scattering for <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050508623000306_inline1.png\" /> <jats:tex-math> $L^2$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> initial data which are <jats:italic>small</jats:italic> and <jats:italic>nonlocalized</jats:italic>. Our main structural assumption is that our nonlinearity is <jats:italic>defocusing</jats:italic>. However, we do not assume that our problem has any exact conservation laws. Our method is based on a robust reinterpretation of the idea of Interaction Morawetz estimates, developed almost 20 years ago by the I-team. In terms of scattering, we prove that our global solutions satisfy both global <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050508623000306_inline2.png\" /> <jats:tex-math> $L^6$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> Strichartz estimates and bilinear <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050508623000306_inline3.png\" /> <jats:tex-math> $L^2$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> bounds. This is a Galilean invariant result, which is new even for the classical defocusing cubic NLS.<jats:sup>1</jats:sup> There, by scaling, our result also admits a large data counterpart.","PeriodicalId":56024,"journal":{"name":"Forum of Mathematics Pi","volume":"117 3","pages":""},"PeriodicalIF":2.3,"publicationDate":"2023-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138519683","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
On local Galois deformation rings 局部伽罗瓦变形环
IF 2.3 1区 数学
Forum of Mathematics Pi Pub Date : 2023-10-26 DOI: 10.1017/fmp.2023.25
Gebhard Böckle, Ashwin Iyengar, Vytautas Paškūnas
{"title":"On local Galois deformation rings","authors":"Gebhard Böckle, Ashwin Iyengar, Vytautas Paškūnas","doi":"10.1017/fmp.2023.25","DOIUrl":"https://doi.org/10.1017/fmp.2023.25","url":null,"abstract":"We show that framed deformation rings of mod <jats:italic>p</jats:italic> representations of the absolute Galois group of a <jats:italic>p</jats:italic>-adic local field are complete intersections of expected dimension. We determine their irreducible components and show that they and their special fibres are normal and complete intersection. As an application, we prove density results of loci with prescribed <jats:italic>p</jats:italic>-adic Hodge theoretic properties.","PeriodicalId":56024,"journal":{"name":"Forum of Mathematics Pi","volume":"41 2","pages":""},"PeriodicalIF":2.3,"publicationDate":"2023-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138519682","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 6
Anticoncentration in Ramsey graphs and a proof of the Erdős–McKay conjecture Ramsey图中的反浓缩与Erdõs–McKay猜想的一个证明
IF 2.3 1区 数学
Forum of Mathematics Pi Pub Date : 2023-08-24 DOI: 10.1017/fmp.2023.17
Matthew Kwan, A. Sah, Lisa Sauermann, Mehtaab Sawhney
{"title":"Anticoncentration in Ramsey graphs and a proof of the Erdős–McKay conjecture","authors":"Matthew Kwan, A. Sah, Lisa Sauermann, Mehtaab Sawhney","doi":"10.1017/fmp.2023.17","DOIUrl":"https://doi.org/10.1017/fmp.2023.17","url":null,"abstract":"Abstract An n-vertex graph is called C-Ramsey if it has no clique or independent set of size \u0000$Clog _2 n$\u0000 (i.e., if it has near-optimal Ramsey behavior). In this paper, we study edge statistics in Ramsey graphs, in particular obtaining very precise control of the distribution of the number of edges in a random vertex subset of a C-Ramsey graph. This brings together two ongoing lines of research: the study of ‘random-like’ properties of Ramsey graphs and the study of small-ball probability for low-degree polynomials of independent random variables. The proof proceeds via an ‘additive structure’ dichotomy on the degree sequence and involves a wide range of different tools from Fourier analysis, random matrix theory, the theory of Boolean functions, probabilistic combinatorics and low-rank approximation. In particular, a key ingredient is a new sharpened version of the quadratic Carbery–Wright theorem on small-ball probability for polynomials of Gaussians, which we believe is of independent interest. One of the consequences of our result is the resolution of an old conjecture of Erdős and McKay, for which Erdős reiterated in several of his open problem collections and for which he offered one of his notorious monetary prizes.","PeriodicalId":56024,"journal":{"name":"Forum of Mathematics Pi","volume":" ","pages":""},"PeriodicalIF":2.3,"publicationDate":"2023-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47815580","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
New lower bounds for matrix multiplication and $operatorname {det}_3$ 新的下界矩阵乘法和$operatorname {det}_3$
IF 2.3 1区 数学
Forum of Mathematics Pi Pub Date : 2023-05-29 DOI: 10.1017/fmp.2023.14
Austin Conner, Alicia Harper, J. Landsberg
{"title":"New lower bounds for matrix multiplication and \u0000$operatorname {det}_3$","authors":"Austin Conner, Alicia Harper, J. Landsberg","doi":"10.1017/fmp.2023.14","DOIUrl":"https://doi.org/10.1017/fmp.2023.14","url":null,"abstract":"Abstract Let \u0000$M_{langle mathbf {u},mathbf {v},mathbf {w}rangle }in mathbb C^{mathbf {u}mathbf {v}}{mathord { otimes } } mathbb C^{mathbf {v}mathbf {w}}{mathord { otimes } } mathbb C^{mathbf {w}mathbf {u}}$\u0000 denote the matrix multiplication tensor (and write \u0000$M_{langle mathbf {n} rangle }=M_{langle mathbf {n},mathbf {n},mathbf {n}rangle }$\u0000 ), and let \u0000$operatorname {det}_3in (mathbb C^9)^{{mathord { otimes } } 3}$\u0000 denote the determinant polynomial considered as a tensor. For a tensor T, let \u0000$underline {mathbf {R}}(T)$\u0000 denote its border rank. We (i) give the first hand-checkable algebraic proof that \u0000$underline {mathbf {R}}(M_{langle 2rangle })=7$\u0000 , (ii) prove \u0000$underline {mathbf {R}}(M_{langle 223rangle })=10$\u0000 and \u0000$underline {mathbf {R}}(M_{langle 233rangle })=14$\u0000 , where previously the only nontrivial matrix multiplication tensor whose border rank had been determined was \u0000$M_{langle 2rangle }$\u0000 , (iii) prove \u0000$underline {mathbf {R}}( M_{langle 3rangle })geq 17$\u0000 , (iv) prove \u0000$underline {mathbf {R}}(operatorname {det}_3)=17$\u0000 , improving the previous lower bound of \u0000$12$\u0000 , (v) prove \u0000$underline {mathbf {R}}(M_{langle 2mathbf {n}mathbf {n}rangle })geq mathbf {n}^2+1.32mathbf {n}$\u0000 for all \u0000$mathbf {n}geq 25$\u0000 , where previously only \u0000$underline {mathbf {R}}(M_{langle 2mathbf {n}mathbf {n}rangle })geq mathbf {n}^2+1$\u0000 was known, as well as lower bounds for \u0000$4leq mathbf {n}leq 25$\u0000 , and (vi) prove \u0000$underline {mathbf {R}}(M_{langle 3mathbf {n}mathbf {n}rangle })geq mathbf {n}^2+1.6mathbf {n}$\u0000 for all \u0000$mathbf {n} ge 18$\u0000 , where previously only \u0000$underline {mathbf {R}}(M_{langle 3mathbf {n}mathbf {n}rangle })geq mathbf {n}^2+2$\u0000 was known. The last two results are significant for two reasons: (i) they are essentially the first nontrivial lower bounds for tensors in an “unbalanced” ambient space and (ii) they demonstrate that the methods we use (border apolarity) may be applied to sequences of tensors. The methods used to obtain the results are new and “nonnatural” in the sense of Razborov and Rudich, in that the results are obtained via an algorithm that cannot be effectively applied to generic tensors. We utilize a new technique, called border apolarity developed by Buczyńska and Buczyński in the general context of toric varieties. We apply this technique to develop an algorithm that, given a tensor T and an integer r, in a finite number of steps, either outputs that there is no border rank r decomposition for T or produces a list of all normalized ideals which could potentially result from a border rank decomposition. The algorithm is effectively implementable when T has a large symmetry group, in which case it outputs potential decompositions in a natural normal form. The algorithm is based on algebraic geometry and representation theory.","PeriodicalId":56024,"journal":{"name":"Forum of Mathematics Pi","volume":" ","pages":""},"PeriodicalIF":2.3,"publicationDate":"2023-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47449455","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
A Proof of the Extended Delta Conjecture – Corrigendum 扩展Delta猜想的证明-勘误表
IF 2.3 1区 数学
Forum of Mathematics Pi Pub Date : 2023-03-06 DOI: 10.1017/fmp.2023.8
{"title":"A Proof of the Extended Delta Conjecture – Corrigendum","authors":"","doi":"10.1017/fmp.2023.8","DOIUrl":"https://doi.org/10.1017/fmp.2023.8","url":null,"abstract":"","PeriodicalId":56024,"journal":{"name":"Forum of Mathematics Pi","volume":" ","pages":""},"PeriodicalIF":2.3,"publicationDate":"2023-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48230736","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
A Shuffle Theorem for Paths Under Any Line – Corrigendum 任意直线下路径的洗牌定理-勘误
IF 2.3 1区 数学
Forum of Mathematics Pi Pub Date : 2023-03-06 DOI: 10.1017/fmp.2023.9
{"title":"A Shuffle Theorem for Paths Under Any Line – Corrigendum","authors":"","doi":"10.1017/fmp.2023.9","DOIUrl":"https://doi.org/10.1017/fmp.2023.9","url":null,"abstract":"","PeriodicalId":56024,"journal":{"name":"Forum of Mathematics Pi","volume":"11 1","pages":""},"PeriodicalIF":2.3,"publicationDate":"2023-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44990212","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信