映射度和多尺度几何

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Aleksandr Berdnikov, Larry Guth, Fedor Manin
{"title":"映射度和多尺度几何","authors":"Aleksandr Berdnikov, Larry Guth, Fedor Manin","doi":"10.1017/fmp.2023.33","DOIUrl":null,"url":null,"abstract":"We study the degree of an <jats:italic>L</jats:italic>-Lipschitz map between Riemannian manifolds, proving new upper bounds and constructing new examples. For instance, if <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050508623000331_inline1.png\" /> <jats:tex-math> $X_k$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> is the connected sum of <jats:italic>k</jats:italic> copies of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050508623000331_inline2.png\" /> <jats:tex-math> $\\mathbb CP^2$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> for <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050508623000331_inline3.png\" /> <jats:tex-math> $k \\ge 4$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, then we prove that the maximum degree of an <jats:italic>L</jats:italic>-Lipschitz self-map of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050508623000331_inline4.png\" /> <jats:tex-math> $X_k$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> is between <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050508623000331_inline5.png\" /> <jats:tex-math> $C_1 L^4 (\\log L)^{-4}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050508623000331_inline6.png\" /> <jats:tex-math> $C_2 L^4 (\\log L)^{-1/2}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. More generally, we divide simply connected manifolds into three topological types with three different behaviors. Each type is defined by purely topological criteria. For scalable simply connected <jats:italic>n</jats:italic>-manifolds, the maximal degree is <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050508623000331_inline7.png\" /> <jats:tex-math> $\\sim L^n$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. For formal but nonscalable simply connected <jats:italic>n</jats:italic>-manifolds, the maximal degree grows roughly like <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050508623000331_inline8.png\" /> <jats:tex-math> $L^n (\\log L)^{-\\theta (1)}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. And for nonformal simply connected <jats:italic>n</jats:italic>-manifolds, the maximal degree is bounded by <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050508623000331_inline9.png\" /> <jats:tex-math> $L^\\alpha $ </jats:tex-math> </jats:alternatives> </jats:inline-formula> for some <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050508623000331_inline10.png\" /> <jats:tex-math> $\\alpha &lt; n$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Degrees of maps and multiscale geometry\",\"authors\":\"Aleksandr Berdnikov, Larry Guth, Fedor Manin\",\"doi\":\"10.1017/fmp.2023.33\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the degree of an <jats:italic>L</jats:italic>-Lipschitz map between Riemannian manifolds, proving new upper bounds and constructing new examples. For instance, if <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S2050508623000331_inline1.png\\\" /> <jats:tex-math> $X_k$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> is the connected sum of <jats:italic>k</jats:italic> copies of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S2050508623000331_inline2.png\\\" /> <jats:tex-math> $\\\\mathbb CP^2$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> for <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S2050508623000331_inline3.png\\\" /> <jats:tex-math> $k \\\\ge 4$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, then we prove that the maximum degree of an <jats:italic>L</jats:italic>-Lipschitz self-map of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S2050508623000331_inline4.png\\\" /> <jats:tex-math> $X_k$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> is between <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S2050508623000331_inline5.png\\\" /> <jats:tex-math> $C_1 L^4 (\\\\log L)^{-4}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S2050508623000331_inline6.png\\\" /> <jats:tex-math> $C_2 L^4 (\\\\log L)^{-1/2}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. More generally, we divide simply connected manifolds into three topological types with three different behaviors. Each type is defined by purely topological criteria. For scalable simply connected <jats:italic>n</jats:italic>-manifolds, the maximal degree is <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S2050508623000331_inline7.png\\\" /> <jats:tex-math> $\\\\sim L^n$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. For formal but nonscalable simply connected <jats:italic>n</jats:italic>-manifolds, the maximal degree grows roughly like <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S2050508623000331_inline8.png\\\" /> <jats:tex-math> $L^n (\\\\log L)^{-\\\\theta (1)}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. And for nonformal simply connected <jats:italic>n</jats:italic>-manifolds, the maximal degree is bounded by <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S2050508623000331_inline9.png\\\" /> <jats:tex-math> $L^\\\\alpha $ </jats:tex-math> </jats:alternatives> </jats:inline-formula> for some <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S2050508623000331_inline10.png\\\" /> <jats:tex-math> $\\\\alpha &lt; n$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-01-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/fmp.2023.33\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/fmp.2023.33","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了黎曼流形之间的 L-Lipschitz 映射的度数,证明了新的上界并构建了新的例子。例如,如果 $X_k$ 是 $k \ge 4$ 的 k 份 $\mathbb CP^2$ 的连通和,那么我们证明 $X_k$ 的 L-Lipschitz 自映射的最大度介于 $C_1 L^4 (\log L)^{-4}$ 和 $C_2 L^4 (\log L)^{-1/2}$ 之间。更一般地说,我们把简单连接流形分为三种拓扑类型,具有三种不同的行为。每种类型都由纯拓扑标准定义。对于可伸缩的简单连接 n 流形,最大度数是 $\sim L^n$ 。对于形式但不可扩展的简单连接 n 形,最大度数的增长大致为 $L^n (\log L)^{-\theta (1)}$ 。而对于非形式简单相连的 n-manifolds,对于某个 $\alpha < n$,最大度数以 $L^\alpha $ 为界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Degrees of maps and multiscale geometry
We study the degree of an L-Lipschitz map between Riemannian manifolds, proving new upper bounds and constructing new examples. For instance, if $X_k$ is the connected sum of k copies of $\mathbb CP^2$ for $k \ge 4$ , then we prove that the maximum degree of an L-Lipschitz self-map of $X_k$ is between $C_1 L^4 (\log L)^{-4}$ and $C_2 L^4 (\log L)^{-1/2}$ . More generally, we divide simply connected manifolds into three topological types with three different behaviors. Each type is defined by purely topological criteria. For scalable simply connected n-manifolds, the maximal degree is $\sim L^n$ . For formal but nonscalable simply connected n-manifolds, the maximal degree grows roughly like $L^n (\log L)^{-\theta (1)}$ . And for nonformal simply connected n-manifolds, the maximal degree is bounded by $L^\alpha $ for some $\alpha < n$ .
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信