{"title":"映射度和多尺度几何","authors":"Aleksandr Berdnikov, Larry Guth, Fedor Manin","doi":"10.1017/fmp.2023.33","DOIUrl":null,"url":null,"abstract":"We study the degree of an <jats:italic>L</jats:italic>-Lipschitz map between Riemannian manifolds, proving new upper bounds and constructing new examples. For instance, if <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050508623000331_inline1.png\" /> <jats:tex-math> $X_k$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> is the connected sum of <jats:italic>k</jats:italic> copies of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050508623000331_inline2.png\" /> <jats:tex-math> $\\mathbb CP^2$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> for <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050508623000331_inline3.png\" /> <jats:tex-math> $k \\ge 4$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, then we prove that the maximum degree of an <jats:italic>L</jats:italic>-Lipschitz self-map of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050508623000331_inline4.png\" /> <jats:tex-math> $X_k$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> is between <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050508623000331_inline5.png\" /> <jats:tex-math> $C_1 L^4 (\\log L)^{-4}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050508623000331_inline6.png\" /> <jats:tex-math> $C_2 L^4 (\\log L)^{-1/2}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. More generally, we divide simply connected manifolds into three topological types with three different behaviors. Each type is defined by purely topological criteria. For scalable simply connected <jats:italic>n</jats:italic>-manifolds, the maximal degree is <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050508623000331_inline7.png\" /> <jats:tex-math> $\\sim L^n$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. For formal but nonscalable simply connected <jats:italic>n</jats:italic>-manifolds, the maximal degree grows roughly like <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050508623000331_inline8.png\" /> <jats:tex-math> $L^n (\\log L)^{-\\theta (1)}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. And for nonformal simply connected <jats:italic>n</jats:italic>-manifolds, the maximal degree is bounded by <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050508623000331_inline9.png\" /> <jats:tex-math> $L^\\alpha $ </jats:tex-math> </jats:alternatives> </jats:inline-formula> for some <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050508623000331_inline10.png\" /> <jats:tex-math> $\\alpha < n$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>.","PeriodicalId":56024,"journal":{"name":"Forum of Mathematics Pi","volume":"532 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Degrees of maps and multiscale geometry\",\"authors\":\"Aleksandr Berdnikov, Larry Guth, Fedor Manin\",\"doi\":\"10.1017/fmp.2023.33\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the degree of an <jats:italic>L</jats:italic>-Lipschitz map between Riemannian manifolds, proving new upper bounds and constructing new examples. For instance, if <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S2050508623000331_inline1.png\\\" /> <jats:tex-math> $X_k$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> is the connected sum of <jats:italic>k</jats:italic> copies of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S2050508623000331_inline2.png\\\" /> <jats:tex-math> $\\\\mathbb CP^2$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> for <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S2050508623000331_inline3.png\\\" /> <jats:tex-math> $k \\\\ge 4$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, then we prove that the maximum degree of an <jats:italic>L</jats:italic>-Lipschitz self-map of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S2050508623000331_inline4.png\\\" /> <jats:tex-math> $X_k$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> is between <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S2050508623000331_inline5.png\\\" /> <jats:tex-math> $C_1 L^4 (\\\\log L)^{-4}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S2050508623000331_inline6.png\\\" /> <jats:tex-math> $C_2 L^4 (\\\\log L)^{-1/2}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. More generally, we divide simply connected manifolds into three topological types with three different behaviors. Each type is defined by purely topological criteria. For scalable simply connected <jats:italic>n</jats:italic>-manifolds, the maximal degree is <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S2050508623000331_inline7.png\\\" /> <jats:tex-math> $\\\\sim L^n$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. For formal but nonscalable simply connected <jats:italic>n</jats:italic>-manifolds, the maximal degree grows roughly like <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S2050508623000331_inline8.png\\\" /> <jats:tex-math> $L^n (\\\\log L)^{-\\\\theta (1)}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. And for nonformal simply connected <jats:italic>n</jats:italic>-manifolds, the maximal degree is bounded by <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S2050508623000331_inline9.png\\\" /> <jats:tex-math> $L^\\\\alpha $ </jats:tex-math> </jats:alternatives> </jats:inline-formula> for some <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S2050508623000331_inline10.png\\\" /> <jats:tex-math> $\\\\alpha < n$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>.\",\"PeriodicalId\":56024,\"journal\":{\"name\":\"Forum of Mathematics Pi\",\"volume\":\"532 1\",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-01-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Forum of Mathematics Pi\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/fmp.2023.33\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forum of Mathematics Pi","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/fmp.2023.33","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
We study the degree of an L-Lipschitz map between Riemannian manifolds, proving new upper bounds and constructing new examples. For instance, if $X_k$ is the connected sum of k copies of $\mathbb CP^2$ for $k \ge 4$ , then we prove that the maximum degree of an L-Lipschitz self-map of $X_k$ is between $C_1 L^4 (\log L)^{-4}$ and $C_2 L^4 (\log L)^{-1/2}$ . More generally, we divide simply connected manifolds into three topological types with three different behaviors. Each type is defined by purely topological criteria. For scalable simply connected n-manifolds, the maximal degree is $\sim L^n$ . For formal but nonscalable simply connected n-manifolds, the maximal degree grows roughly like $L^n (\log L)^{-\theta (1)}$ . And for nonformal simply connected n-manifolds, the maximal degree is bounded by $L^\alpha $ for some $\alpha < n$ .
期刊介绍:
Forum of Mathematics, Pi is the open access alternative to the leading generalist mathematics journals and are of real interest to a broad cross-section of all mathematicians. Papers published are of the highest quality.
Forum of Mathematics, Pi and Forum of Mathematics, Sigma are an exciting new development in journal publishing. Together they offer fully open access publication combined with peer-review standards set by an international editorial board of the highest calibre, and all backed by Cambridge University Press and our commitment to quality. Strong research papers from all parts of pure mathematics and related areas are welcomed. All published papers are free online to readers in perpetuity.