Martin Ravn Christiansen, Christian Hainzl, Phan Thành Nam
{"title":"The Random Phase Approximation for Interacting Fermi Gases in the Mean-Field Regime","authors":"Martin Ravn Christiansen, Christian Hainzl, Phan Thành Nam","doi":"10.1017/fmp.2023.31","DOIUrl":null,"url":null,"abstract":"We present a general approach to justify the random phase approximation for the homogeneous Fermi gas in three dimensions in the mean-field scaling regime. We consider a system of <jats:italic>N</jats:italic> fermions on a torus, interacting via a two-body repulsive potential proportional to <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050508623000318_inline1.png\" /> <jats:tex-math> $N^{-\\frac {1}{3}}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. In the limit <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050508623000318_inline2.png\" /> <jats:tex-math> $N\\rightarrow \\infty $ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, we derive the exact leading order of the correlation energy and the bosonic elementary excitations of the system, which are consistent with the prediction of the random phase approximation in the physics literature.","PeriodicalId":56024,"journal":{"name":"Forum of Mathematics Pi","volume":"54 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2023-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forum of Mathematics Pi","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/fmp.2023.31","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
We present a general approach to justify the random phase approximation for the homogeneous Fermi gas in three dimensions in the mean-field scaling regime. We consider a system of N fermions on a torus, interacting via a two-body repulsive potential proportional to $N^{-\frac {1}{3}}$ . In the limit $N\rightarrow \infty $ , we derive the exact leading order of the correlation energy and the bosonic elementary excitations of the system, which are consistent with the prediction of the random phase approximation in the physics literature.
期刊介绍:
Forum of Mathematics, Pi is the open access alternative to the leading generalist mathematics journals and are of real interest to a broad cross-section of all mathematicians. Papers published are of the highest quality.
Forum of Mathematics, Pi and Forum of Mathematics, Sigma are an exciting new development in journal publishing. Together they offer fully open access publication combined with peer-review standards set by an international editorial board of the highest calibre, and all backed by Cambridge University Press and our commitment to quality. Strong research papers from all parts of pure mathematics and related areas are welcomed. All published papers are free online to readers in perpetuity.