{"title":"Degrees of maps and multiscale geometry","authors":"Aleksandr Berdnikov, Larry Guth, Fedor Manin","doi":"10.1017/fmp.2023.33","DOIUrl":null,"url":null,"abstract":"We study the degree of an <jats:italic>L</jats:italic>-Lipschitz map between Riemannian manifolds, proving new upper bounds and constructing new examples. For instance, if <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050508623000331_inline1.png\" /> <jats:tex-math> $X_k$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> is the connected sum of <jats:italic>k</jats:italic> copies of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050508623000331_inline2.png\" /> <jats:tex-math> $\\mathbb CP^2$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> for <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050508623000331_inline3.png\" /> <jats:tex-math> $k \\ge 4$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, then we prove that the maximum degree of an <jats:italic>L</jats:italic>-Lipschitz self-map of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050508623000331_inline4.png\" /> <jats:tex-math> $X_k$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> is between <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050508623000331_inline5.png\" /> <jats:tex-math> $C_1 L^4 (\\log L)^{-4}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050508623000331_inline6.png\" /> <jats:tex-math> $C_2 L^4 (\\log L)^{-1/2}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. More generally, we divide simply connected manifolds into three topological types with three different behaviors. Each type is defined by purely topological criteria. For scalable simply connected <jats:italic>n</jats:italic>-manifolds, the maximal degree is <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050508623000331_inline7.png\" /> <jats:tex-math> $\\sim L^n$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. For formal but nonscalable simply connected <jats:italic>n</jats:italic>-manifolds, the maximal degree grows roughly like <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050508623000331_inline8.png\" /> <jats:tex-math> $L^n (\\log L)^{-\\theta (1)}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. And for nonformal simply connected <jats:italic>n</jats:italic>-manifolds, the maximal degree is bounded by <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050508623000331_inline9.png\" /> <jats:tex-math> $L^\\alpha $ </jats:tex-math> </jats:alternatives> </jats:inline-formula> for some <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050508623000331_inline10.png\" /> <jats:tex-math> $\\alpha < n$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/fmp.2023.33","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
We study the degree of an L-Lipschitz map between Riemannian manifolds, proving new upper bounds and constructing new examples. For instance, if $X_k$ is the connected sum of k copies of $\mathbb CP^2$ for $k \ge 4$ , then we prove that the maximum degree of an L-Lipschitz self-map of $X_k$ is between $C_1 L^4 (\log L)^{-4}$ and $C_2 L^4 (\log L)^{-1/2}$ . More generally, we divide simply connected manifolds into three topological types with three different behaviors. Each type is defined by purely topological criteria. For scalable simply connected n-manifolds, the maximal degree is $\sim L^n$ . For formal but nonscalable simply connected n-manifolds, the maximal degree grows roughly like $L^n (\log L)^{-\theta (1)}$ . And for nonformal simply connected n-manifolds, the maximal degree is bounded by $L^\alpha $ for some $\alpha < n$ .