Smith theory and cyclic base change functoriality

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Tony Feng
{"title":"Smith theory and cyclic base change functoriality","authors":"Tony Feng","doi":"10.1017/fmp.2023.32","DOIUrl":null,"url":null,"abstract":"<p>Lafforgue and Genestier-Lafforgue have constructed the global and (semisimplified) local Langlands correspondences for arbitrary reductive groups over function fields. We establish various properties of these correspondences regarding functoriality for cyclic base change: For <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240112084941107-0818:S205050862300032X:S205050862300032X_inline1.png\"><span data-mathjax-type=\"texmath\"><span>$\\mathbf {Z}/p\\mathbf {Z}$</span></span></img></span></span>-extensions of global function fields, we prove the existence of base change for mod <span>p</span> automorphic forms on arbitrary reductive groups. For <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240112084941107-0818:S205050862300032X:S205050862300032X_inline2.png\"><span data-mathjax-type=\"texmath\"><span>$\\mathbf {Z}/p\\mathbf {Z}$</span></span></img></span></span>-extensions of local function fields, we construct a base change homomorphism for the mod <span>p</span> Bernstein center of any reductive group. We then use this to prove existence of local base change for mod <span>p</span> irreducible representation along <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240112084941107-0818:S205050862300032X:S205050862300032X_inline3.png\"><span data-mathjax-type=\"texmath\"><span>$\\mathbf {Z}/p\\mathbf {Z}$</span></span></img></span></span>-extensions, and that Tate cohomology realizes base change descent, verifying a function field version of a conjecture of Treumann-Venkatesh.</p><p>The proofs are based on equivariant localization arguments for the moduli spaces of shtukas. They also draw upon new tools from modular representation theory, including parity sheaves and Smith-Treumann theory. In particular, we use these to establish a categorification of the base change homomorphism for mod <span>p</span> spherical Hecke algebras, in a joint appendix with Gus Lonergan.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/fmp.2023.32","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

Lafforgue and Genestier-Lafforgue have constructed the global and (semisimplified) local Langlands correspondences for arbitrary reductive groups over function fields. We establish various properties of these correspondences regarding functoriality for cyclic base change: For Abstract Image$\mathbf {Z}/p\mathbf {Z}$-extensions of global function fields, we prove the existence of base change for mod p automorphic forms on arbitrary reductive groups. For Abstract Image$\mathbf {Z}/p\mathbf {Z}$-extensions of local function fields, we construct a base change homomorphism for the mod p Bernstein center of any reductive group. We then use this to prove existence of local base change for mod p irreducible representation along Abstract Image$\mathbf {Z}/p\mathbf {Z}$-extensions, and that Tate cohomology realizes base change descent, verifying a function field version of a conjecture of Treumann-Venkatesh.

The proofs are based on equivariant localization arguments for the moduli spaces of shtukas. They also draw upon new tools from modular representation theory, including parity sheaves and Smith-Treumann theory. In particular, we use these to establish a categorification of the base change homomorphism for mod p spherical Hecke algebras, in a joint appendix with Gus Lonergan.

斯密理论与循环基变函数性
Lafforgue 和 Genestier-Lafforgue 为函数域上的任意还原群构建了全局和(半简化的)局部朗兰兹对应关系。我们为这些对应关系建立了关于循环基变化的函数性的各种性质:对于全局函数域的 $\mathbf {Z}/p\mathbf {Z}$ 扩展,我们证明了任意还原群上 mod p 自形形式的基底变化的存在性。对于局部函数域的 $\mathbf {Z}/p\mathbf {Z}$ 扩展,我们为任意还原群的模 p 伯恩斯坦中心构造了一个基变同态。然后,我们用它证明了沿着 $\mathbf {Z}/p\mathbf {Z}$ 扩展的模 p 不可还原表示的局部基变的存在,以及塔特同调实现了基变下降,验证了特鲁曼-文卡特什一个猜想的函数场版本。证明基于shtukas模空间的等变本地化论证,同时还借鉴了模块表示理论的新工具,包括奇偶性剪和史密斯-特鲁曼理论。特别是,在与古斯-侬纳根(Gus Lonergan)的联合附录中,我们利用这些工具为模 p 球形赫克代数建立了基变同态的分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信