{"title":"斯密理论与循环基变函数性","authors":"Tony Feng","doi":"10.1017/fmp.2023.32","DOIUrl":null,"url":null,"abstract":"<p>Lafforgue and Genestier-Lafforgue have constructed the global and (semisimplified) local Langlands correspondences for arbitrary reductive groups over function fields. We establish various properties of these correspondences regarding functoriality for cyclic base change: For <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240112084941107-0818:S205050862300032X:S205050862300032X_inline1.png\"><span data-mathjax-type=\"texmath\"><span>$\\mathbf {Z}/p\\mathbf {Z}$</span></span></img></span></span>-extensions of global function fields, we prove the existence of base change for mod <span>p</span> automorphic forms on arbitrary reductive groups. For <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240112084941107-0818:S205050862300032X:S205050862300032X_inline2.png\"><span data-mathjax-type=\"texmath\"><span>$\\mathbf {Z}/p\\mathbf {Z}$</span></span></img></span></span>-extensions of local function fields, we construct a base change homomorphism for the mod <span>p</span> Bernstein center of any reductive group. We then use this to prove existence of local base change for mod <span>p</span> irreducible representation along <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240112084941107-0818:S205050862300032X:S205050862300032X_inline3.png\"><span data-mathjax-type=\"texmath\"><span>$\\mathbf {Z}/p\\mathbf {Z}$</span></span></img></span></span>-extensions, and that Tate cohomology realizes base change descent, verifying a function field version of a conjecture of Treumann-Venkatesh.</p><p>The proofs are based on equivariant localization arguments for the moduli spaces of shtukas. They also draw upon new tools from modular representation theory, including parity sheaves and Smith-Treumann theory. In particular, we use these to establish a categorification of the base change homomorphism for mod <span>p</span> spherical Hecke algebras, in a joint appendix with Gus Lonergan.</p>","PeriodicalId":56024,"journal":{"name":"Forum of Mathematics Pi","volume":"50 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Smith theory and cyclic base change functoriality\",\"authors\":\"Tony Feng\",\"doi\":\"10.1017/fmp.2023.32\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Lafforgue and Genestier-Lafforgue have constructed the global and (semisimplified) local Langlands correspondences for arbitrary reductive groups over function fields. We establish various properties of these correspondences regarding functoriality for cyclic base change: For <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240112084941107-0818:S205050862300032X:S205050862300032X_inline1.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\mathbf {Z}/p\\\\mathbf {Z}$</span></span></img></span></span>-extensions of global function fields, we prove the existence of base change for mod <span>p</span> automorphic forms on arbitrary reductive groups. For <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240112084941107-0818:S205050862300032X:S205050862300032X_inline2.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\mathbf {Z}/p\\\\mathbf {Z}$</span></span></img></span></span>-extensions of local function fields, we construct a base change homomorphism for the mod <span>p</span> Bernstein center of any reductive group. We then use this to prove existence of local base change for mod <span>p</span> irreducible representation along <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240112084941107-0818:S205050862300032X:S205050862300032X_inline3.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\mathbf {Z}/p\\\\mathbf {Z}$</span></span></img></span></span>-extensions, and that Tate cohomology realizes base change descent, verifying a function field version of a conjecture of Treumann-Venkatesh.</p><p>The proofs are based on equivariant localization arguments for the moduli spaces of shtukas. They also draw upon new tools from modular representation theory, including parity sheaves and Smith-Treumann theory. In particular, we use these to establish a categorification of the base change homomorphism for mod <span>p</span> spherical Hecke algebras, in a joint appendix with Gus Lonergan.</p>\",\"PeriodicalId\":56024,\"journal\":{\"name\":\"Forum of Mathematics Pi\",\"volume\":\"50 1\",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-01-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Forum of Mathematics Pi\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/fmp.2023.32\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forum of Mathematics Pi","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/fmp.2023.32","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
Lafforgue 和 Genestier-Lafforgue 为函数域上的任意还原群构建了全局和(半简化的)局部朗兰兹对应关系。我们为这些对应关系建立了关于循环基变化的函数性的各种性质:对于全局函数域的 $\mathbf {Z}/p\mathbf {Z}$ 扩展,我们证明了任意还原群上 mod p 自形形式的基底变化的存在性。对于局部函数域的 $\mathbf {Z}/p\mathbf {Z}$ 扩展,我们为任意还原群的模 p 伯恩斯坦中心构造了一个基变同态。然后,我们用它证明了沿着 $\mathbf {Z}/p\mathbf {Z}$ 扩展的模 p 不可还原表示的局部基变的存在,以及塔特同调实现了基变下降,验证了特鲁曼-文卡特什一个猜想的函数场版本。证明基于shtukas模空间的等变本地化论证,同时还借鉴了模块表示理论的新工具,包括奇偶性剪和史密斯-特鲁曼理论。特别是,在与古斯-侬纳根(Gus Lonergan)的联合附录中,我们利用这些工具为模 p 球形赫克代数建立了基变同态的分类。
Lafforgue and Genestier-Lafforgue have constructed the global and (semisimplified) local Langlands correspondences for arbitrary reductive groups over function fields. We establish various properties of these correspondences regarding functoriality for cyclic base change: For $\mathbf {Z}/p\mathbf {Z}$-extensions of global function fields, we prove the existence of base change for mod p automorphic forms on arbitrary reductive groups. For $\mathbf {Z}/p\mathbf {Z}$-extensions of local function fields, we construct a base change homomorphism for the mod p Bernstein center of any reductive group. We then use this to prove existence of local base change for mod p irreducible representation along $\mathbf {Z}/p\mathbf {Z}$-extensions, and that Tate cohomology realizes base change descent, verifying a function field version of a conjecture of Treumann-Venkatesh.
The proofs are based on equivariant localization arguments for the moduli spaces of shtukas. They also draw upon new tools from modular representation theory, including parity sheaves and Smith-Treumann theory. In particular, we use these to establish a categorification of the base change homomorphism for mod p spherical Hecke algebras, in a joint appendix with Gus Lonergan.
期刊介绍:
Forum of Mathematics, Pi is the open access alternative to the leading generalist mathematics journals and are of real interest to a broad cross-section of all mathematicians. Papers published are of the highest quality.
Forum of Mathematics, Pi and Forum of Mathematics, Sigma are an exciting new development in journal publishing. Together they offer fully open access publication combined with peer-review standards set by an international editorial board of the highest calibre, and all backed by Cambridge University Press and our commitment to quality. Strong research papers from all parts of pure mathematics and related areas are welcomed. All published papers are free online to readers in perpetuity.