{"title":"一维三次散焦色散方程的全局解:第1部分","authors":"Mihaela Ifrim, Daniel Tataru","doi":"10.1017/fmp.2023.30","DOIUrl":null,"url":null,"abstract":"This article is devoted to a general class of one-dimensional NLS problems with a cubic nonlinearity. The question of obtaining scattering, global in time solutions for such problems has attracted a lot of attention in recent years, and many global well-posedness results have been proved for a number of models under the assumption that the initial data are both <jats:italic>small</jats:italic> and <jats:italic>localized</jats:italic>. However, except for the completely integrable case, no such results have been known for small but not necessarily localized initial data. In this article, we introduce a new, nonperturbative method to prove global well-posedness and scattering for <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050508623000306_inline1.png\" /> <jats:tex-math> $L^2$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> initial data which are <jats:italic>small</jats:italic> and <jats:italic>nonlocalized</jats:italic>. Our main structural assumption is that our nonlinearity is <jats:italic>defocusing</jats:italic>. However, we do not assume that our problem has any exact conservation laws. Our method is based on a robust reinterpretation of the idea of Interaction Morawetz estimates, developed almost 20 years ago by the I-team. In terms of scattering, we prove that our global solutions satisfy both global <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050508623000306_inline2.png\" /> <jats:tex-math> $L^6$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> Strichartz estimates and bilinear <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050508623000306_inline3.png\" /> <jats:tex-math> $L^2$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> bounds. This is a Galilean invariant result, which is new even for the classical defocusing cubic NLS.<jats:sup>1</jats:sup> There, by scaling, our result also admits a large data counterpart.","PeriodicalId":56024,"journal":{"name":"Forum of Mathematics Pi","volume":"117 3","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2023-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Global solutions for 1D cubic defocusing dispersive equations: Part I\",\"authors\":\"Mihaela Ifrim, Daniel Tataru\",\"doi\":\"10.1017/fmp.2023.30\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article is devoted to a general class of one-dimensional NLS problems with a cubic nonlinearity. The question of obtaining scattering, global in time solutions for such problems has attracted a lot of attention in recent years, and many global well-posedness results have been proved for a number of models under the assumption that the initial data are both <jats:italic>small</jats:italic> and <jats:italic>localized</jats:italic>. However, except for the completely integrable case, no such results have been known for small but not necessarily localized initial data. In this article, we introduce a new, nonperturbative method to prove global well-posedness and scattering for <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S2050508623000306_inline1.png\\\" /> <jats:tex-math> $L^2$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> initial data which are <jats:italic>small</jats:italic> and <jats:italic>nonlocalized</jats:italic>. Our main structural assumption is that our nonlinearity is <jats:italic>defocusing</jats:italic>. However, we do not assume that our problem has any exact conservation laws. Our method is based on a robust reinterpretation of the idea of Interaction Morawetz estimates, developed almost 20 years ago by the I-team. In terms of scattering, we prove that our global solutions satisfy both global <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S2050508623000306_inline2.png\\\" /> <jats:tex-math> $L^6$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> Strichartz estimates and bilinear <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S2050508623000306_inline3.png\\\" /> <jats:tex-math> $L^2$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> bounds. This is a Galilean invariant result, which is new even for the classical defocusing cubic NLS.<jats:sup>1</jats:sup> There, by scaling, our result also admits a large data counterpart.\",\"PeriodicalId\":56024,\"journal\":{\"name\":\"Forum of Mathematics Pi\",\"volume\":\"117 3\",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2023-12-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Forum of Mathematics Pi\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/fmp.2023.30\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forum of Mathematics Pi","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/fmp.2023.30","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Global solutions for 1D cubic defocusing dispersive equations: Part I
This article is devoted to a general class of one-dimensional NLS problems with a cubic nonlinearity. The question of obtaining scattering, global in time solutions for such problems has attracted a lot of attention in recent years, and many global well-posedness results have been proved for a number of models under the assumption that the initial data are both small and localized. However, except for the completely integrable case, no such results have been known for small but not necessarily localized initial data. In this article, we introduce a new, nonperturbative method to prove global well-posedness and scattering for $L^2$ initial data which are small and nonlocalized. Our main structural assumption is that our nonlinearity is defocusing. However, we do not assume that our problem has any exact conservation laws. Our method is based on a robust reinterpretation of the idea of Interaction Morawetz estimates, developed almost 20 years ago by the I-team. In terms of scattering, we prove that our global solutions satisfy both global $L^6$ Strichartz estimates and bilinear $L^2$ bounds. This is a Galilean invariant result, which is new even for the classical defocusing cubic NLS.1 There, by scaling, our result also admits a large data counterpart.
期刊介绍:
Forum of Mathematics, Pi is the open access alternative to the leading generalist mathematics journals and are of real interest to a broad cross-section of all mathematicians. Papers published are of the highest quality.
Forum of Mathematics, Pi and Forum of Mathematics, Sigma are an exciting new development in journal publishing. Together they offer fully open access publication combined with peer-review standards set by an international editorial board of the highest calibre, and all backed by Cambridge University Press and our commitment to quality. Strong research papers from all parts of pure mathematics and related areas are welcomed. All published papers are free online to readers in perpetuity.