新的下界矩阵乘法和$\operatorname {det}_3$

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Austin Conner, Alicia Harper, J. Landsberg
{"title":"新的下界矩阵乘法和$\\operatorname {det}_3$","authors":"Austin Conner, Alicia Harper, J. Landsberg","doi":"10.1017/fmp.2023.14","DOIUrl":null,"url":null,"abstract":"Abstract Let \n$M_{\\langle \\mathbf {u},\\mathbf {v},\\mathbf {w}\\rangle }\\in \\mathbb C^{\\mathbf {u}\\mathbf {v}}{\\mathord { \\otimes } } \\mathbb C^{\\mathbf {v}\\mathbf {w}}{\\mathord { \\otimes } } \\mathbb C^{\\mathbf {w}\\mathbf {u}}$\n denote the matrix multiplication tensor (and write \n$M_{\\langle \\mathbf {n} \\rangle }=M_{\\langle \\mathbf {n},\\mathbf {n},\\mathbf {n}\\rangle }$\n ), and let \n$\\operatorname {det}_3\\in (\\mathbb C^9)^{{\\mathord { \\otimes } } 3}$\n denote the determinant polynomial considered as a tensor. For a tensor T, let \n$\\underline {\\mathbf {R}}(T)$\n denote its border rank. We (i) give the first hand-checkable algebraic proof that \n$\\underline {\\mathbf {R}}(M_{\\langle 2\\rangle })=7$\n , (ii) prove \n$\\underline {\\mathbf {R}}(M_{\\langle 223\\rangle })=10$\n and \n$\\underline {\\mathbf {R}}(M_{\\langle 233\\rangle })=14$\n , where previously the only nontrivial matrix multiplication tensor whose border rank had been determined was \n$M_{\\langle 2\\rangle }$\n , (iii) prove \n$\\underline {\\mathbf {R}}( M_{\\langle 3\\rangle })\\geq 17$\n , (iv) prove \n$\\underline {\\mathbf {R}}(\\operatorname {det}_3)=17$\n , improving the previous lower bound of \n$12$\n , (v) prove \n$\\underline {\\mathbf {R}}(M_{\\langle 2\\mathbf {n}\\mathbf {n}\\rangle })\\geq \\mathbf {n}^2+1.32\\mathbf {n}$\n for all \n$\\mathbf {n}\\geq 25$\n , where previously only \n$\\underline {\\mathbf {R}}(M_{\\langle 2\\mathbf {n}\\mathbf {n}\\rangle })\\geq \\mathbf {n}^2+1$\n was known, as well as lower bounds for \n$4\\leq \\mathbf {n}\\leq 25$\n , and (vi) prove \n$\\underline {\\mathbf {R}}(M_{\\langle 3\\mathbf {n}\\mathbf {n}\\rangle })\\geq \\mathbf {n}^2+1.6\\mathbf {n}$\n for all \n$\\mathbf {n} \\ge 18$\n , where previously only \n$\\underline {\\mathbf {R}}(M_{\\langle 3\\mathbf {n}\\mathbf {n}\\rangle })\\geq \\mathbf {n}^2+2$\n was known. The last two results are significant for two reasons: (i) they are essentially the first nontrivial lower bounds for tensors in an “unbalanced” ambient space and (ii) they demonstrate that the methods we use (border apolarity) may be applied to sequences of tensors. The methods used to obtain the results are new and “nonnatural” in the sense of Razborov and Rudich, in that the results are obtained via an algorithm that cannot be effectively applied to generic tensors. We utilize a new technique, called border apolarity developed by Buczyńska and Buczyński in the general context of toric varieties. We apply this technique to develop an algorithm that, given a tensor T and an integer r, in a finite number of steps, either outputs that there is no border rank r decomposition for T or produces a list of all normalized ideals which could potentially result from a border rank decomposition. The algorithm is effectively implementable when T has a large symmetry group, in which case it outputs potential decompositions in a natural normal form. The algorithm is based on algebraic geometry and representation theory.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"New lower bounds for matrix multiplication and \\n$\\\\operatorname {det}_3$\",\"authors\":\"Austin Conner, Alicia Harper, J. Landsberg\",\"doi\":\"10.1017/fmp.2023.14\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Let \\n$M_{\\\\langle \\\\mathbf {u},\\\\mathbf {v},\\\\mathbf {w}\\\\rangle }\\\\in \\\\mathbb C^{\\\\mathbf {u}\\\\mathbf {v}}{\\\\mathord { \\\\otimes } } \\\\mathbb C^{\\\\mathbf {v}\\\\mathbf {w}}{\\\\mathord { \\\\otimes } } \\\\mathbb C^{\\\\mathbf {w}\\\\mathbf {u}}$\\n denote the matrix multiplication tensor (and write \\n$M_{\\\\langle \\\\mathbf {n} \\\\rangle }=M_{\\\\langle \\\\mathbf {n},\\\\mathbf {n},\\\\mathbf {n}\\\\rangle }$\\n ), and let \\n$\\\\operatorname {det}_3\\\\in (\\\\mathbb C^9)^{{\\\\mathord { \\\\otimes } } 3}$\\n denote the determinant polynomial considered as a tensor. For a tensor T, let \\n$\\\\underline {\\\\mathbf {R}}(T)$\\n denote its border rank. We (i) give the first hand-checkable algebraic proof that \\n$\\\\underline {\\\\mathbf {R}}(M_{\\\\langle 2\\\\rangle })=7$\\n , (ii) prove \\n$\\\\underline {\\\\mathbf {R}}(M_{\\\\langle 223\\\\rangle })=10$\\n and \\n$\\\\underline {\\\\mathbf {R}}(M_{\\\\langle 233\\\\rangle })=14$\\n , where previously the only nontrivial matrix multiplication tensor whose border rank had been determined was \\n$M_{\\\\langle 2\\\\rangle }$\\n , (iii) prove \\n$\\\\underline {\\\\mathbf {R}}( M_{\\\\langle 3\\\\rangle })\\\\geq 17$\\n , (iv) prove \\n$\\\\underline {\\\\mathbf {R}}(\\\\operatorname {det}_3)=17$\\n , improving the previous lower bound of \\n$12$\\n , (v) prove \\n$\\\\underline {\\\\mathbf {R}}(M_{\\\\langle 2\\\\mathbf {n}\\\\mathbf {n}\\\\rangle })\\\\geq \\\\mathbf {n}^2+1.32\\\\mathbf {n}$\\n for all \\n$\\\\mathbf {n}\\\\geq 25$\\n , where previously only \\n$\\\\underline {\\\\mathbf {R}}(M_{\\\\langle 2\\\\mathbf {n}\\\\mathbf {n}\\\\rangle })\\\\geq \\\\mathbf {n}^2+1$\\n was known, as well as lower bounds for \\n$4\\\\leq \\\\mathbf {n}\\\\leq 25$\\n , and (vi) prove \\n$\\\\underline {\\\\mathbf {R}}(M_{\\\\langle 3\\\\mathbf {n}\\\\mathbf {n}\\\\rangle })\\\\geq \\\\mathbf {n}^2+1.6\\\\mathbf {n}$\\n for all \\n$\\\\mathbf {n} \\\\ge 18$\\n , where previously only \\n$\\\\underline {\\\\mathbf {R}}(M_{\\\\langle 3\\\\mathbf {n}\\\\mathbf {n}\\\\rangle })\\\\geq \\\\mathbf {n}^2+2$\\n was known. The last two results are significant for two reasons: (i) they are essentially the first nontrivial lower bounds for tensors in an “unbalanced” ambient space and (ii) they demonstrate that the methods we use (border apolarity) may be applied to sequences of tensors. The methods used to obtain the results are new and “nonnatural” in the sense of Razborov and Rudich, in that the results are obtained via an algorithm that cannot be effectively applied to generic tensors. We utilize a new technique, called border apolarity developed by Buczyńska and Buczyński in the general context of toric varieties. We apply this technique to develop an algorithm that, given a tensor T and an integer r, in a finite number of steps, either outputs that there is no border rank r decomposition for T or produces a list of all normalized ideals which could potentially result from a border rank decomposition. The algorithm is effectively implementable when T has a large symmetry group, in which case it outputs potential decompositions in a natural normal form. The algorithm is based on algebraic geometry and representation theory.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2023-05-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/fmp.2023.14\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/fmp.2023.14","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 1

摘要

摘要:设$M_{\langle \mathbf {u},\mathbf {v},\mathbf {w}\rangle }\in \mathbb C^{\mathbf {u}\mathbf {v}}{\mathord { \otimes } } \mathbb C^{\mathbf {v}\mathbf {w}}{\mathord { \otimes } } \mathbb C^{\mathbf {w}\mathbf {u}}$表示矩阵乘法张量(写成$M_{\langle \mathbf {n} \rangle }=M_{\langle \mathbf {n},\mathbf {n},\mathbf {n}\rangle }$),设$\operatorname {det}_3\in (\mathbb C^9)^{{\mathord { \otimes } } 3}$表示作为张量的行列式多项式。对于张量T,设$\underline {\mathbf {R}}(T)$表示它的边界秩。我们(i)给出了$\underline {\mathbf {R}}(M_{\langle 2\rangle })=7$的第一个可手工校验的代数证明,(ii)证明了$\underline {\mathbf {R}}(M_{\langle 223\rangle })=10$和$\underline {\mathbf {R}}(M_{\langle 233\rangle })=14$,其中以前唯一确定边界秩的非平凡矩阵乘法张量是$M_{\langle 2\rangle }$, (iii)证明了$\underline {\mathbf {R}}( M_{\langle 3\rangle })\geq 17$, (iv)证明了$\underline {\mathbf {R}}(\operatorname {det}_3)=17$,改进了$12$的上界,(v)证明了$\underline {\mathbf {R}}(M_{\langle 2\mathbf {n}\mathbf {n}\rangle })\geq \mathbf {n}^2+1.32\mathbf {n}$对所有$\mathbf {n}\geq 25$,其中以前只知道$\underline {\mathbf {R}}(M_{\langle 2\mathbf {n}\mathbf {n}\rangle })\geq \mathbf {n}^2+1$。以及$4\leq \mathbf {n}\leq 25$的下界,和(vi)证明$\underline {\mathbf {R}}(M_{\langle 3\mathbf {n}\mathbf {n}\rangle })\geq \mathbf {n}^2+1.6\mathbf {n}$对所有$\mathbf {n} \ge 18$,其中以前只知道$\underline {\mathbf {R}}(M_{\langle 3\mathbf {n}\mathbf {n}\rangle })\geq \mathbf {n}^2+2$。最后两个结果之所以重要,有两个原因:(i)它们本质上是“不平衡”环境空间中张量的第一个非平凡下界;(ii)它们证明了我们使用的方法(边界极化)可以应用于张量序列。在Razborov和Rudich的意义上,用于获得结果的方法是新的和“非自然的”,因为结果是通过一种不能有效应用于泛型张量的算法获得的。我们利用了一种新技术,称为边界极性,由Buczyńska和Buczyński在环面品种的一般背景下开发。我们应用这种技术来开发一种算法,给定一个张量T和一个整数r,在有限的步骤中,要么输出T没有边界秩r分解,要么产生一个可能由边界秩分解产生的所有标准化理想的列表。当T有一个大的对称群时,该算法是有效实现的,在这种情况下,它以自然范式输出潜在的分解。该算法基于代数几何和表示理论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
New lower bounds for matrix multiplication and $\operatorname {det}_3$
Abstract Let $M_{\langle \mathbf {u},\mathbf {v},\mathbf {w}\rangle }\in \mathbb C^{\mathbf {u}\mathbf {v}}{\mathord { \otimes } } \mathbb C^{\mathbf {v}\mathbf {w}}{\mathord { \otimes } } \mathbb C^{\mathbf {w}\mathbf {u}}$ denote the matrix multiplication tensor (and write $M_{\langle \mathbf {n} \rangle }=M_{\langle \mathbf {n},\mathbf {n},\mathbf {n}\rangle }$ ), and let $\operatorname {det}_3\in (\mathbb C^9)^{{\mathord { \otimes } } 3}$ denote the determinant polynomial considered as a tensor. For a tensor T, let $\underline {\mathbf {R}}(T)$ denote its border rank. We (i) give the first hand-checkable algebraic proof that $\underline {\mathbf {R}}(M_{\langle 2\rangle })=7$ , (ii) prove $\underline {\mathbf {R}}(M_{\langle 223\rangle })=10$ and $\underline {\mathbf {R}}(M_{\langle 233\rangle })=14$ , where previously the only nontrivial matrix multiplication tensor whose border rank had been determined was $M_{\langle 2\rangle }$ , (iii) prove $\underline {\mathbf {R}}( M_{\langle 3\rangle })\geq 17$ , (iv) prove $\underline {\mathbf {R}}(\operatorname {det}_3)=17$ , improving the previous lower bound of $12$ , (v) prove $\underline {\mathbf {R}}(M_{\langle 2\mathbf {n}\mathbf {n}\rangle })\geq \mathbf {n}^2+1.32\mathbf {n}$ for all $\mathbf {n}\geq 25$ , where previously only $\underline {\mathbf {R}}(M_{\langle 2\mathbf {n}\mathbf {n}\rangle })\geq \mathbf {n}^2+1$ was known, as well as lower bounds for $4\leq \mathbf {n}\leq 25$ , and (vi) prove $\underline {\mathbf {R}}(M_{\langle 3\mathbf {n}\mathbf {n}\rangle })\geq \mathbf {n}^2+1.6\mathbf {n}$ for all $\mathbf {n} \ge 18$ , where previously only $\underline {\mathbf {R}}(M_{\langle 3\mathbf {n}\mathbf {n}\rangle })\geq \mathbf {n}^2+2$ was known. The last two results are significant for two reasons: (i) they are essentially the first nontrivial lower bounds for tensors in an “unbalanced” ambient space and (ii) they demonstrate that the methods we use (border apolarity) may be applied to sequences of tensors. The methods used to obtain the results are new and “nonnatural” in the sense of Razborov and Rudich, in that the results are obtained via an algorithm that cannot be effectively applied to generic tensors. We utilize a new technique, called border apolarity developed by Buczyńska and Buczyński in the general context of toric varieties. We apply this technique to develop an algorithm that, given a tensor T and an integer r, in a finite number of steps, either outputs that there is no border rank r decomposition for T or produces a list of all normalized ideals which could potentially result from a border rank decomposition. The algorithm is effectively implementable when T has a large symmetry group, in which case it outputs potential decompositions in a natural normal form. The algorithm is based on algebraic geometry and representation theory.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信