{"title":"Infinitely many positive periodic solutions for second order functional differential equations","authors":"Weibing Wang, Shen Luo","doi":"10.1016/j.aml.2024.109431","DOIUrl":"https://doi.org/10.1016/j.aml.2024.109431","url":null,"abstract":"In this paper, we study the existence of infinitely many positive periodic solutions to a class of second order functional differential equations which cannot be applied directly to the fixed point theorem in cone. With suitable deformations, we construct the operator whose fixed point is closely related to the periodic solution of the original equation and show that the problem has infinitely many positive periodic solutions under appropriate conditions.","PeriodicalId":55497,"journal":{"name":"Applied Mathematics Letters","volume":"13 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142874326","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"On a new mechanism of the emergence of spatial distributions in biological models","authors":"B. Kazmierczak, V. Volpert","doi":"10.1016/j.aml.2024.109427","DOIUrl":"https://doi.org/10.1016/j.aml.2024.109427","url":null,"abstract":"Non-uniform distributions of various biological factors can be essential for tissue growth control, morphogenesis or tumor growth. The first model describing the emergence of such distributions was suggested by A. Turing for the explanation of cell differentiation in a growing embryo. In this model, diffusion-driven instability of the homogeneous in space solution appears due to the interaction of two or more morphogens described by a reaction–diffusion system of equations. In this work we suggest another mechanism of the emergence of spatial distributions in biological tissues based on local cell communication and global inhibition, and described by a nonlocal reaction–diffusion equation. Instability of the homogeneous in space solution leads to the emergence of stationary pulses and not of periodic solutions as in the case of Turing instability.","PeriodicalId":55497,"journal":{"name":"Applied Mathematics Letters","volume":"281 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142874399","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Infinitely many sign-changing normalized solutions for nonlinear scalar field equations","authors":"Jiaxin Zhan, Jianjun Zhang, Xuexiu Zhong, Jinfang Zhou","doi":"10.1016/j.aml.2024.109426","DOIUrl":"https://doi.org/10.1016/j.aml.2024.109426","url":null,"abstract":"We study the existence of infinitely many sign-changing solutions to the following nonlinear scalar Schrödinger equation <ce:display><ce:formula><mml:math altimg=\"si1.svg\" display=\"block\"><mml:mrow><mml:mo>−</mml:mo><mml:mi>Δ</mml:mi><mml:mi>u</mml:mi><mml:mo linebreak=\"goodbreak\">+</mml:mo><mml:mi>λ</mml:mi><mml:mi>u</mml:mi><mml:mo linebreak=\"goodbreak\">=</mml:mo><mml:mi>f</mml:mi><mml:mrow><mml:mo>(</mml:mo><mml:mi>u</mml:mi><mml:mo>)</mml:mo></mml:mrow><mml:mspace width=\"1em\"></mml:mspace><mml:mtext>in</mml:mtext><mml:mspace width=\"1em\"></mml:mspace><mml:msup><mml:mrow><mml:mi mathvariant=\"double-struck\">R</mml:mi></mml:mrow><mml:mrow><mml:mi>N</mml:mi></mml:mrow></mml:msup></mml:mrow></mml:math></ce:formula></ce:display>with a prescribed mass <mml:math altimg=\"si2.svg\" display=\"inline\"><mml:mrow><mml:msub><mml:mrow><mml:mo>∫</mml:mo></mml:mrow><mml:mrow><mml:msup><mml:mrow><mml:mi mathvariant=\"double-struck\">R</mml:mi></mml:mrow><mml:mrow><mml:mi>N</mml:mi></mml:mrow></mml:msup></mml:mrow></mml:msub><mml:msup><mml:mrow><mml:mrow><mml:mo>|</mml:mo><mml:mi>u</mml:mi><mml:mo>|</mml:mo></mml:mrow></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msup><mml:mi mathvariant=\"normal\">d</mml:mi><mml:mi>x</mml:mi><mml:mo linebreak=\"goodbreak\" linebreakstyle=\"after\">=</mml:mo><mml:mi>a</mml:mi><mml:mo>.</mml:mo></mml:mrow></mml:math> Here <mml:math altimg=\"si3.svg\" display=\"inline\"><mml:mrow><mml:mi>f</mml:mi><mml:mo linebreak=\"goodbreak\" linebreakstyle=\"after\">∈</mml:mo><mml:msup><mml:mrow><mml:mi>C</mml:mi></mml:mrow><mml:mrow><mml:mn>1</mml:mn></mml:mrow></mml:msup><mml:mrow><mml:mo>(</mml:mo><mml:mi mathvariant=\"double-struck\">R</mml:mi><mml:mo>,</mml:mo><mml:mi mathvariant=\"double-struck\">R</mml:mi><mml:mo>)</mml:mo></mml:mrow></mml:mrow></mml:math>, <mml:math altimg=\"si4.svg\" display=\"inline\"><mml:mrow><mml:mi>a</mml:mi><mml:mo linebreak=\"goodbreak\" linebreakstyle=\"after\">></mml:mo><mml:mn>0</mml:mn></mml:mrow></mml:math> is a given constant and <mml:math altimg=\"si5.svg\" display=\"inline\"><mml:mrow><mml:mi>λ</mml:mi><mml:mo linebreak=\"goodbreak\" linebreakstyle=\"after\">∈</mml:mo><mml:mi mathvariant=\"double-struck\">R</mml:mi></mml:mrow></mml:math> is an unknown parameter appearing as a Lagrange multiplier. Jeanjean and Lu have established the existence of infinitely many sign-changing normalized solutions in [Nonlinearity 32 (2019), no. 12, 4942–4966] and [Calc. Var. Partial Differential Equations 59 (2020), no. 5, Paper No. 174, 43 pp.] for <mml:math altimg=\"si6.svg\" display=\"inline\"><mml:mrow><mml:mi>N</mml:mi><mml:mo linebreak=\"goodbreak\" linebreakstyle=\"after\">=</mml:mo><mml:mn>4</mml:mn></mml:mrow></mml:math> or <mml:math altimg=\"si7.svg\" display=\"inline\"><mml:mrow><mml:mi>N</mml:mi><mml:mo linebreak=\"goodbreak\" linebreakstyle=\"after\">≥</mml:mo><mml:mn>6</mml:mn></mml:mrow></mml:math>. After fully utilizing the properties of positive solutions given by Jeanjean,Zhang and Zhong[J. Math. Pures Appl. (9) 183 (2024), 44–75], we give an alt","PeriodicalId":55497,"journal":{"name":"Applied Mathematics Letters","volume":"22 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142874400","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Spatiotemporal dynamics in a three-component predator–prey model","authors":"Mengxin Chen, Xue-Zhi Li, Canrong Tian","doi":"10.1016/j.aml.2024.109424","DOIUrl":"https://doi.org/10.1016/j.aml.2024.109424","url":null,"abstract":"This paper explores the spatiotemporal dynamics of a three-component predator–prey model with prey-taxis. We mainly show the existence of the steady state bifurcation and the bifurcating solution. Of most interesting discovery is that only the repulsive type prey-taxis could establish the existence of the steady state bifurcation and spatial pattern formation of the system. There are no steady state bifurcation and spatial patterns under the attractive type prey-taxis or without prey-taxis.","PeriodicalId":55497,"journal":{"name":"Applied Mathematics Letters","volume":"92 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142823262","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Local modification and analysis of a variable-order fractional wave equation","authors":"Shuyu Li, Hong Wang, Jinhong Jia","doi":"10.1016/j.aml.2024.109425","DOIUrl":"https://doi.org/10.1016/j.aml.2024.109425","url":null,"abstract":"We investigate a local modification of a variable-order time-fractional wave equation, which models the vibrations of a viscoelastic bar along its longitudinal axis. Under suitable assumptions regarding the variable order at <mml:math altimg=\"si1.svg\" display=\"inline\"><mml:mrow><mml:mi>t</mml:mi><mml:mo linebreak=\"goodbreak\" linebreakstyle=\"after\">=</mml:mo><mml:mn>0</mml:mn></mml:mrow></mml:math>, we prove that the original model is equivalent to a multiscale wave equation. Furthermore, we analyze the well-posedness of its weak solution. Numerical experiments are implemented to clarify the theoretical analysis.","PeriodicalId":55497,"journal":{"name":"Applied Mathematics Letters","volume":"122 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142874419","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Global [formula omitted]-estimates and dissipative [formula omitted]-estimates of solutions for retarded reaction–diffusion equations","authors":"Ruijing Wang, Chunqiu Li","doi":"10.1016/j.aml.2024.109423","DOIUrl":"https://doi.org/10.1016/j.aml.2024.109423","url":null,"abstract":"This paper is concerned with the retarded reaction–diffusion equation <mml:math altimg=\"si1.svg\" display=\"inline\"><mml:mrow><mml:msub><mml:mrow><mml:mi>∂</mml:mi></mml:mrow><mml:mrow><mml:mi>t</mml:mi></mml:mrow></mml:msub><mml:mi>u</mml:mi><mml:mo linebreak=\"goodbreak\" linebreakstyle=\"after\">−</mml:mo><mml:mi>Δ</mml:mi><mml:mi>u</mml:mi><mml:mo linebreak=\"goodbreak\" linebreakstyle=\"after\">=</mml:mo><mml:mi>f</mml:mi><mml:mrow><mml:mo>(</mml:mo><mml:mi>u</mml:mi><mml:mo>)</mml:mo></mml:mrow><mml:mo linebreak=\"goodbreak\" linebreakstyle=\"after\">+</mml:mo><mml:mi>G</mml:mi><mml:mrow><mml:mo>(</mml:mo><mml:mi>t</mml:mi><mml:mo>,</mml:mo><mml:msub><mml:mrow><mml:mi>u</mml:mi></mml:mrow><mml:mrow><mml:mi>t</mml:mi></mml:mrow></mml:msub><mml:mo>)</mml:mo></mml:mrow><mml:mo linebreak=\"goodbreak\" linebreakstyle=\"after\">+</mml:mo><mml:mi>h</mml:mi><mml:mrow><mml:mo>(</mml:mo><mml:mi>x</mml:mi><mml:mo>)</mml:mo></mml:mrow></mml:mrow></mml:math> in a bounded domain. We allow both the nonlinear terms <mml:math altimg=\"si2.svg\" display=\"inline\"><mml:mi>f</mml:mi></mml:math> and <mml:math altimg=\"si3.svg\" display=\"inline\"><mml:mi>G</mml:mi></mml:math> to be supercritical, in which case the solutions may blow up in finite time, making it difficult to obtain global estimates. Here we employ some appropriate structure conditions to deal with this problem. In particular, we establish detailed global <mml:math altimg=\"si6.svg\" display=\"inline\"><mml:msup><mml:mrow><mml:mi>L</mml:mi></mml:mrow><mml:mrow><mml:mi>∞</mml:mi></mml:mrow></mml:msup></mml:math>-estimates and dissipative <mml:math altimg=\"si7.svg\" display=\"inline\"><mml:msup><mml:mrow><mml:mi>H</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msup></mml:math>-estimates for the solutions and further enhance the regularity results.","PeriodicalId":55497,"journal":{"name":"Applied Mathematics Letters","volume":"31 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142823232","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Acceleration of self-consistent field iteration for Kohn–Sham density functional theory","authors":"Fengmin Ge, Fusheng Luo, Fei Xu","doi":"10.1016/j.aml.2024.109422","DOIUrl":"https://doi.org/10.1016/j.aml.2024.109422","url":null,"abstract":"Density functional theory calculations involve complex nonlinear models that require iterative algorithms to obtain approximate solutions. The number of iterations directly affects the computational efficiency of the iterative algorithms. However, for complex molecular systems, classical self-consistent field iterations either do not converge, or converge slowly. To improve the efficiency of self-consistent field iterations, this paper proposes a novel acceleration algorithm, which utilizes some approximate solutions to fit the convergence trend of errors and then obtains a more accurate approximate solution through extrapolation. This novel algorithm differs from previous acceleration schemes in terms of both its ideology and form. Besides using the combination of the derived approximations, we also predict a more accurate solution based on the decreasing trend of error. The significant acceleration effect of the proposed algorithm is demonstrated through numerical examples.","PeriodicalId":55497,"journal":{"name":"Applied Mathematics Letters","volume":"17 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142823118","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Francesco Dell’Accio, Francisco Marcellán, Federico Nudo
{"title":"A quadrature formula on triangular domains via an interpolation-regression approach","authors":"Francesco Dell’Accio, Francisco Marcellán, Federico Nudo","doi":"10.1016/j.aml.2024.109414","DOIUrl":"https://doi.org/10.1016/j.aml.2024.109414","url":null,"abstract":"In this paper, we present a quadrature formula on triangular domains based on a set of simplex points. This formula is defined via the constrained mock-Waldron least squares approximation. Numerical experiments validate the effectiveness of the proposed method.","PeriodicalId":55497,"journal":{"name":"Applied Mathematics Letters","volume":"21 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142823227","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Dbar-dressing method for a new [formula omitted]-dimensional generalized Kadomtsev–Petviashvili equation","authors":"Zhenjie Niu, Biao Li","doi":"10.1016/j.aml.2024.109411","DOIUrl":"https://doi.org/10.1016/j.aml.2024.109411","url":null,"abstract":"The primary purpose of this work is to consider a <mml:math altimg=\"si6.svg\" display=\"inline\"><mml:mrow><mml:mo>(</mml:mo><mml:mn>2</mml:mn><mml:mo linebreak=\"goodbreak\" linebreakstyle=\"after\">+</mml:mo><mml:mn>1</mml:mn><mml:mo>)</mml:mo></mml:mrow></mml:math>-dimensional generalized KP equation via <mml:math altimg=\"si2.svg\" display=\"inline\"><mml:mover accent=\"true\"><mml:mrow><mml:mi>∂</mml:mi></mml:mrow><mml:mrow><mml:mo>̄</mml:mo></mml:mrow></mml:mover></mml:math>-dressing method. Using the Fourier transform and Fourier inverse transform, we give the expression of the Green function for spatial spectral problem. Then, we choose two linear independent eigenfunctions and calculate the <mml:math altimg=\"si2.svg\" display=\"inline\"><mml:mover accent=\"true\"><mml:mrow><mml:mi>∂</mml:mi></mml:mrow><mml:mrow><mml:mo>̄</mml:mo></mml:mrow></mml:mover></mml:math> derivative, a <mml:math altimg=\"si2.svg\" display=\"inline\"><mml:mover accent=\"true\"><mml:mrow><mml:mi>∂</mml:mi></mml:mrow><mml:mrow><mml:mo>̄</mml:mo></mml:mrow></mml:mover></mml:math> problem arises naturally. Based on the symmetry of the Green function, we give a standard <mml:math altimg=\"si2.svg\" display=\"inline\"><mml:mover accent=\"true\"><mml:mrow><mml:mi>∂</mml:mi></mml:mrow><mml:mrow><mml:mo>̄</mml:mo></mml:mrow></mml:mover></mml:math> equation, and its solution is expressed by the Cauchy formula.","PeriodicalId":55497,"journal":{"name":"Applied Mathematics Letters","volume":"47 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142823226","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Normalized ground state solutions of the biharmonic Schrödinger equation with general mass supercritical nonlinearities","authors":"Ziheng Zhang, Ying Wang","doi":"10.1016/j.aml.2024.109415","DOIUrl":"https://doi.org/10.1016/j.aml.2024.109415","url":null,"abstract":"We are interested in the following problem <ce:display><ce:formula><mml:math altimg=\"si1.svg\" display=\"block\"><mml:mfenced close=\"\" open=\"{\"><mml:mrow><mml:mtable align=\"axis\" columnlines=\"none\" equalcolumns=\"false\" equalrows=\"false\"><mml:mtr><mml:mtd columnalign=\"left\"><mml:msup><mml:mrow><mml:mi>Δ</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msup><mml:mi>u</mml:mi><mml:mo>+</mml:mo><mml:mi>λ</mml:mi><mml:mi>u</mml:mi><mml:mo>=</mml:mo><mml:mi>g</mml:mi><mml:mrow><mml:mo>(</mml:mo><mml:mi>u</mml:mi><mml:mo>)</mml:mo></mml:mrow><mml:mspace width=\"0.16667em\"></mml:mspace><mml:mspace width=\"0.16667em\"></mml:mspace><mml:mspace width=\"0.16667em\"></mml:mspace><mml:mspace width=\"0.16667em\"></mml:mspace><mml:mtext>in</mml:mtext><mml:mspace width=\"0.16667em\"></mml:mspace><mml:mspace width=\"0.16667em\"></mml:mspace><mml:mspace width=\"0.16667em\"></mml:mspace><mml:msup><mml:mrow><mml:mi mathvariant=\"double-struck\">R</mml:mi></mml:mrow><mml:mrow><mml:mi>N</mml:mi></mml:mrow></mml:msup><mml:mo>,</mml:mo></mml:mtd></mml:mtr><mml:mtr><mml:mtd columnalign=\"left\"><mml:msub><mml:mrow><mml:mo linebreak=\"badbreak\">∫</mml:mo></mml:mrow><mml:mrow><mml:msup><mml:mrow><mml:mi mathvariant=\"double-struck\">R</mml:mi></mml:mrow><mml:mrow><mml:mi>N</mml:mi></mml:mrow></mml:msup></mml:mrow></mml:msub><mml:msup><mml:mrow><mml:mrow><mml:mo>|</mml:mo><mml:mi>u</mml:mi><mml:mo>|</mml:mo></mml:mrow></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msup><mml:mi>d</mml:mi><mml:mi>x</mml:mi><mml:mo>=</mml:mo><mml:mi>c</mml:mi><mml:mo>,</mml:mo></mml:mtd></mml:mtr></mml:mtable></mml:mrow></mml:mfenced></mml:math></ce:formula></ce:display>where <mml:math altimg=\"si4.svg\" display=\"inline\"><mml:mrow><mml:mi>N</mml:mi><mml:mo linebreak=\"goodbreak\" linebreakstyle=\"after\">≥</mml:mo><mml:mn>5</mml:mn></mml:mrow></mml:math>, <mml:math altimg=\"si5.svg\" display=\"inline\"><mml:mrow><mml:mi>c</mml:mi><mml:mo linebreak=\"goodbreak\" linebreakstyle=\"after\">></mml:mo><mml:mn>0</mml:mn></mml:mrow></mml:math> and <mml:math altimg=\"si6.svg\" display=\"inline\"><mml:mrow><mml:mi>λ</mml:mi><mml:mo linebreak=\"goodbreak\" linebreakstyle=\"after\">∈</mml:mo><mml:mi mathvariant=\"double-struck\">R</mml:mi></mml:mrow></mml:math> appears as a Lagrange multiplier. When <mml:math altimg=\"si7.svg\" display=\"inline\"><mml:mrow><mml:mi>g</mml:mi><mml:mrow><mml:mo>(</mml:mo><mml:mi>u</mml:mi><mml:mo>)</mml:mo></mml:mrow></mml:mrow></mml:math> satisfies a class of general mass supercritical conditions, we introduce one more constraint and consider the corresponding infimum. After showing that the new constraint is natural and verifying the compactness of the minimizing sequence, we obtain the existence of normalized ground state solutions. In this sense, the existing results are generalized and improved significantly.","PeriodicalId":55497,"journal":{"name":"Applied Mathematics Letters","volume":"17 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142790137","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}