Applied Mathematics Letters最新文献

筛选
英文 中文
Lyapunov functions for some epidemic model with high risk and vaccinated class 一类具有高风险和接种类的传染病模型的Lyapunov函数
IF 3.7 2区 数学
Applied Mathematics Letters Pub Date : 2024-12-19 DOI: 10.1016/j.aml.2024.109437
Ran Zhang, Xue Ren
{"title":"Lyapunov functions for some epidemic model with high risk and vaccinated class","authors":"Ran Zhang, Xue Ren","doi":"10.1016/j.aml.2024.109437","DOIUrl":"https://doi.org/10.1016/j.aml.2024.109437","url":null,"abstract":"This paper considers the global asymptotic stability of a model with epidemic model with high risk and vaccinated class, and extends the related methods to two case of reaction–diffusion equations. The results presented here generalize those from Movahedi (2024).","PeriodicalId":55497,"journal":{"name":"Applied Mathematics Letters","volume":"333 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142889364","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Stability and Turing bifurcation in a non-local reaction–diffusion equation with a top-hat kernel 一类具有顶帽核的非局部反应扩散方程的稳定性和图灵分岔
IF 3.7 2区 数学
Applied Mathematics Letters Pub Date : 2024-12-19 DOI: 10.1016/j.aml.2024.109433
Ying Li, Yongli Song
{"title":"Stability and Turing bifurcation in a non-local reaction–diffusion equation with a top-hat kernel","authors":"Ying Li, Yongli Song","doi":"10.1016/j.aml.2024.109433","DOIUrl":"https://doi.org/10.1016/j.aml.2024.109433","url":null,"abstract":"In the non-local reaction–diffusion equation, the form of the kernel function has an important effect on the dynamics of the equation. In this paper, we study the spatiotemporal dynamics of a class of non-local reaction–diffusion equation where the non-locality is described by the top-hat function with the perceptual radius. The perceptual radius establishes a bridge between the local equation and global equation. It has been shown that the perceptual radius can destabilize the constant steady state via Turing bifurcation and the critical bifurcation value is theoretically determined.","PeriodicalId":55497,"journal":{"name":"Applied Mathematics Letters","volume":"65 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142889365","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Lattice Boltzmann method for surface quasi-geostrophic equations with fractional Laplacian 带分数阶拉普拉斯的曲面拟地转方程的点阵Boltzmann方法
IF 3.7 2区 数学
Applied Mathematics Letters Pub Date : 2024-12-19 DOI: 10.1016/j.aml.2024.109434
Haoyuan Gong, Tongtong Zhou, Baochang Shi, Rui Du
{"title":"Lattice Boltzmann method for surface quasi-geostrophic equations with fractional Laplacian","authors":"Haoyuan Gong, Tongtong Zhou, Baochang Shi, Rui Du","doi":"10.1016/j.aml.2024.109434","DOIUrl":"https://doi.org/10.1016/j.aml.2024.109434","url":null,"abstract":"The surface quasi-geostrophic equations with fractional Laplacian are important in the field of oceanic and atmospheric dynamics. In this paper, a new lattice Boltzmann model is proposed to solve the equations. We first obtain an approximation of the governing equation based on the Fourier transform and Gaussian quadrature formula. An LBGK model with a suitable equilibrium distribution function is then developed for the problem. Through Chapman–Enskog expansion, the approximated macroscopic equations can be recovered from the lattice Boltzmann model. Numerical simulations are carried out to verify the numerical accuracy and efficiency.","PeriodicalId":55497,"journal":{"name":"Applied Mathematics Letters","volume":"1 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142929323","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Global attractor for an age-structured HIV model with nonlinear incidence rate 具有非线性发病率的年龄结构HIV模型的全局吸引子
IF 3.7 2区 数学
Applied Mathematics Letters Pub Date : 2024-12-18 DOI: 10.1016/j.aml.2024.109428
Ru Meng, Tingting Zheng, Yantao Luo, Zhidong Teng
{"title":"Global attractor for an age-structured HIV model with nonlinear incidence rate","authors":"Ru Meng, Tingting Zheng, Yantao Luo, Zhidong Teng","doi":"10.1016/j.aml.2024.109428","DOIUrl":"https://doi.org/10.1016/j.aml.2024.109428","url":null,"abstract":"Using the method of characteristics and defining one auxiliary function, we prove the existence of global attractor for a general age-structured HIV model, which can be used to solve the uniformly persistence problem in the Kumar and Abbas (2022).","PeriodicalId":55497,"journal":{"name":"Applied Mathematics Letters","volume":"17 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142874398","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A new structure-preserving method for dual quaternion Hermitian eigenvalue problems 对偶四元数厄密特征值问题的一种新的保结构方法
IF 3.7 2区 数学
Applied Mathematics Letters Pub Date : 2024-12-18 DOI: 10.1016/j.aml.2024.109432
Wenxv Ding, Ying Li, Musheng Wei
{"title":"A new structure-preserving method for dual quaternion Hermitian eigenvalue problems","authors":"Wenxv Ding, Ying Li, Musheng Wei","doi":"10.1016/j.aml.2024.109432","DOIUrl":"https://doi.org/10.1016/j.aml.2024.109432","url":null,"abstract":"Dual quaternion matrix decompositions have played a crucial role in fields such as formation control and image processing in recent years. In this paper, we present an eigenvalue decomposition algorithm for dual quaternion Hermitian matrices. The proposed algorithm is founded on the structure-preserving tridiagonalization of the dual matrix representation of dual quaternion Hermitian matrices through the application of orthogonal matrices. Owing to the utilization of orthogonal transformations, the algorithm exhibits numerical stability. Numerical experiments are provided to illustrate the efficiency of the structure-preserving algorithm.","PeriodicalId":55497,"journal":{"name":"Applied Mathematics Letters","volume":"33 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142889377","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Normalized solutions to HLS lower critical Choquard equation with inverse-power potential and square-root-type nonlinearity 具有反幂势和平方根型非线性的HLS下临界Choquard方程的归一化解
IF 3.7 2区 数学
Applied Mathematics Letters Pub Date : 2024-12-18 DOI: 10.1016/j.aml.2024.109430
Jianlun Liu, Hong-Rui Sun, Ziheng Zhang
{"title":"Normalized solutions to HLS lower critical Choquard equation with inverse-power potential and square-root-type nonlinearity","authors":"Jianlun Liu, Hong-Rui Sun, Ziheng Zhang","doi":"10.1016/j.aml.2024.109430","DOIUrl":"https://doi.org/10.1016/j.aml.2024.109430","url":null,"abstract":"This paper is concerned with the HLS lower critical Choquard equation with inverse-power potential and square-root-type nonlinearity. After giving a novel proof of subadditivity of the constraint minimizing problem and establishing the Brézis–Lieb lemma for square-root-type nonlinearity, we not only prove the existence of normalized solutions but also give its energy estimate.","PeriodicalId":55497,"journal":{"name":"Applied Mathematics Letters","volume":"113 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142874397","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Infinitely many positive periodic solutions for second order functional differential equations 二阶泛函微分方程的无穷多正周期解
IF 3.7 2区 数学
Applied Mathematics Letters Pub Date : 2024-12-18 DOI: 10.1016/j.aml.2024.109431
Weibing Wang, Shen Luo
{"title":"Infinitely many positive periodic solutions for second order functional differential equations","authors":"Weibing Wang, Shen Luo","doi":"10.1016/j.aml.2024.109431","DOIUrl":"https://doi.org/10.1016/j.aml.2024.109431","url":null,"abstract":"In this paper, we study the existence of infinitely many positive periodic solutions to a class of second order functional differential equations which cannot be applied directly to the fixed point theorem in cone. With suitable deformations, we construct the operator whose fixed point is closely related to the periodic solution of the original equation and show that the problem has infinitely many positive periodic solutions under appropriate conditions.","PeriodicalId":55497,"journal":{"name":"Applied Mathematics Letters","volume":"13 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142874326","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On a new mechanism of the emergence of spatial distributions in biological models 论生物模型中空间分布出现的新机制
IF 3.7 2区 数学
Applied Mathematics Letters Pub Date : 2024-12-17 DOI: 10.1016/j.aml.2024.109427
B. Kazmierczak, V. Volpert
{"title":"On a new mechanism of the emergence of spatial distributions in biological models","authors":"B. Kazmierczak, V. Volpert","doi":"10.1016/j.aml.2024.109427","DOIUrl":"https://doi.org/10.1016/j.aml.2024.109427","url":null,"abstract":"Non-uniform distributions of various biological factors can be essential for tissue growth control, morphogenesis or tumor growth. The first model describing the emergence of such distributions was suggested by A. Turing for the explanation of cell differentiation in a growing embryo. In this model, diffusion-driven instability of the homogeneous in space solution appears due to the interaction of two or more morphogens described by a reaction–diffusion system of equations. In this work we suggest another mechanism of the emergence of spatial distributions in biological tissues based on local cell communication and global inhibition, and described by a nonlocal reaction–diffusion equation. Instability of the homogeneous in space solution leads to the emergence of stationary pulses and not of periodic solutions as in the case of Turing instability.","PeriodicalId":55497,"journal":{"name":"Applied Mathematics Letters","volume":"281 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142874399","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Infinitely many sign-changing normalized solutions for nonlinear scalar field equations 非线性标量场方程的无穷多变号归一化解
IF 3.7 2区 数学
Applied Mathematics Letters Pub Date : 2024-12-15 DOI: 10.1016/j.aml.2024.109426
Jiaxin Zhan, Jianjun Zhang, Xuexiu Zhong, Jinfang Zhou
{"title":"Infinitely many sign-changing normalized solutions for nonlinear scalar field equations","authors":"Jiaxin Zhan, Jianjun Zhang, Xuexiu Zhong, Jinfang Zhou","doi":"10.1016/j.aml.2024.109426","DOIUrl":"https://doi.org/10.1016/j.aml.2024.109426","url":null,"abstract":"We study the existence of infinitely many sign-changing solutions to the following nonlinear scalar Schrödinger equation <ce:display><ce:formula><mml:math altimg=\"si1.svg\" display=\"block\"><mml:mrow><mml:mo>−</mml:mo><mml:mi>Δ</mml:mi><mml:mi>u</mml:mi><mml:mo linebreak=\"goodbreak\">+</mml:mo><mml:mi>λ</mml:mi><mml:mi>u</mml:mi><mml:mo linebreak=\"goodbreak\">=</mml:mo><mml:mi>f</mml:mi><mml:mrow><mml:mo>(</mml:mo><mml:mi>u</mml:mi><mml:mo>)</mml:mo></mml:mrow><mml:mspace width=\"1em\"></mml:mspace><mml:mtext>in</mml:mtext><mml:mspace width=\"1em\"></mml:mspace><mml:msup><mml:mrow><mml:mi mathvariant=\"double-struck\">R</mml:mi></mml:mrow><mml:mrow><mml:mi>N</mml:mi></mml:mrow></mml:msup></mml:mrow></mml:math></ce:formula></ce:display>with a prescribed mass <mml:math altimg=\"si2.svg\" display=\"inline\"><mml:mrow><mml:msub><mml:mrow><mml:mo>∫</mml:mo></mml:mrow><mml:mrow><mml:msup><mml:mrow><mml:mi mathvariant=\"double-struck\">R</mml:mi></mml:mrow><mml:mrow><mml:mi>N</mml:mi></mml:mrow></mml:msup></mml:mrow></mml:msub><mml:msup><mml:mrow><mml:mrow><mml:mo>|</mml:mo><mml:mi>u</mml:mi><mml:mo>|</mml:mo></mml:mrow></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msup><mml:mi mathvariant=\"normal\">d</mml:mi><mml:mi>x</mml:mi><mml:mo linebreak=\"goodbreak\" linebreakstyle=\"after\">=</mml:mo><mml:mi>a</mml:mi><mml:mo>.</mml:mo></mml:mrow></mml:math> Here <mml:math altimg=\"si3.svg\" display=\"inline\"><mml:mrow><mml:mi>f</mml:mi><mml:mo linebreak=\"goodbreak\" linebreakstyle=\"after\">∈</mml:mo><mml:msup><mml:mrow><mml:mi>C</mml:mi></mml:mrow><mml:mrow><mml:mn>1</mml:mn></mml:mrow></mml:msup><mml:mrow><mml:mo>(</mml:mo><mml:mi mathvariant=\"double-struck\">R</mml:mi><mml:mo>,</mml:mo><mml:mi mathvariant=\"double-struck\">R</mml:mi><mml:mo>)</mml:mo></mml:mrow></mml:mrow></mml:math>, <mml:math altimg=\"si4.svg\" display=\"inline\"><mml:mrow><mml:mi>a</mml:mi><mml:mo linebreak=\"goodbreak\" linebreakstyle=\"after\">></mml:mo><mml:mn>0</mml:mn></mml:mrow></mml:math> is a given constant and <mml:math altimg=\"si5.svg\" display=\"inline\"><mml:mrow><mml:mi>λ</mml:mi><mml:mo linebreak=\"goodbreak\" linebreakstyle=\"after\">∈</mml:mo><mml:mi mathvariant=\"double-struck\">R</mml:mi></mml:mrow></mml:math> is an unknown parameter appearing as a Lagrange multiplier. Jeanjean and Lu have established the existence of infinitely many sign-changing normalized solutions in [Nonlinearity 32 (2019), no. 12, 4942–4966] and [Calc. Var. Partial Differential Equations 59 (2020), no. 5, Paper No. 174, 43 pp.] for <mml:math altimg=\"si6.svg\" display=\"inline\"><mml:mrow><mml:mi>N</mml:mi><mml:mo linebreak=\"goodbreak\" linebreakstyle=\"after\">=</mml:mo><mml:mn>4</mml:mn></mml:mrow></mml:math> or <mml:math altimg=\"si7.svg\" display=\"inline\"><mml:mrow><mml:mi>N</mml:mi><mml:mo linebreak=\"goodbreak\" linebreakstyle=\"after\">≥</mml:mo><mml:mn>6</mml:mn></mml:mrow></mml:math>. After fully utilizing the properties of positive solutions given by Jeanjean,Zhang and Zhong[J. Math. Pures Appl. (9) 183 (2024), 44–75], we give an alt","PeriodicalId":55497,"journal":{"name":"Applied Mathematics Letters","volume":"22 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142874400","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Spatiotemporal dynamics in a three-component predator–prey model 三要素捕食者-猎物模型的时空动态变化
IF 3.7 2区 数学
Applied Mathematics Letters Pub Date : 2024-12-14 DOI: 10.1016/j.aml.2024.109424
Mengxin Chen, Xue-Zhi Li, Canrong Tian
{"title":"Spatiotemporal dynamics in a three-component predator–prey model","authors":"Mengxin Chen, Xue-Zhi Li, Canrong Tian","doi":"10.1016/j.aml.2024.109424","DOIUrl":"https://doi.org/10.1016/j.aml.2024.109424","url":null,"abstract":"This paper explores the spatiotemporal dynamics of a three-component predator–prey model with prey-taxis. We mainly show the existence of the steady state bifurcation and the bifurcating solution. Of most interesting discovery is that only the repulsive type prey-taxis could establish the existence of the steady state bifurcation and spatial pattern formation of the system. There are no steady state bifurcation and spatial patterns under the attractive type prey-taxis or without prey-taxis.","PeriodicalId":55497,"journal":{"name":"Applied Mathematics Letters","volume":"92 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142823262","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信