Global solutions for the system of a viscous two-fluid model

IF 2.9 2区 数学 Q1 MATHEMATICS, APPLIED
Yan Liu, Wenjun Wang
{"title":"Global solutions for the system of a viscous two-fluid model","authors":"Yan Liu,&nbsp;Wenjun Wang","doi":"10.1016/j.aml.2025.109530","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we consider a viscous compressible two-fluid model with a pressure law that depends on two variables. We establish the existence theory for the global solution of this system within the <span><math><mrow><msup><mrow><mi>H</mi></mrow><mrow><mi>N</mi></mrow></msup><mrow><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mn>3</mn></mrow></msup><mo>)</mo></mrow></mrow></math></span>-framework <span><math><mrow><mo>(</mo><mi>N</mi><mo>≥</mo><mn>2</mn><mo>)</mo></mrow></math></span>, assuming that the <span><math><mrow><msup><mrow><mi>H</mi></mrow><mrow><mn>2</mn></mrow></msup><mrow><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mn>3</mn></mrow></msup><mo>)</mo></mrow></mrow></math></span>-norm of the initial perturbation is small. The energy method combined with the low-frequency and high-frequency decomposition is used to derive the decay of the solution and hence the global existence. As a byproduct, we obtain the <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>-<span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> convergence rates for the solution.</div></div>","PeriodicalId":55497,"journal":{"name":"Applied Mathematics Letters","volume":"166 ","pages":"Article 109530"},"PeriodicalIF":2.9000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics Letters","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0893965925000801","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we consider a viscous compressible two-fluid model with a pressure law that depends on two variables. We establish the existence theory for the global solution of this system within the HN(R3)-framework (N2), assuming that the H2(R3)-norm of the initial perturbation is small. The energy method combined with the low-frequency and high-frequency decomposition is used to derive the decay of the solution and hence the global existence. As a byproduct, we obtain the L2-L2 convergence rates for the solution.
粘性双流体模型系统的全局解
本文考虑了一个粘性可压缩双流体模型,该模型的压力律依赖于两个变量。在初始扰动H2(R3)范数较小的条件下,建立了该系统在HN(R3)-框架(N≥2)内全局解的存在性理论。利用能量法结合低频和高频分解,推导出解的衰减性,从而得到解的全局存在性。作为一个副产品,我们得到了解的L2-L2收敛速率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied Mathematics Letters
Applied Mathematics Letters 数学-应用数学
CiteScore
7.70
自引率
5.40%
发文量
347
审稿时长
10 days
期刊介绍: The purpose of Applied Mathematics Letters is to provide a means of rapid publication for important but brief applied mathematical papers. The brief descriptions of any work involving a novel application or utilization of mathematics, or a development in the methodology of applied mathematics is a potential contribution for this journal. This journal''s focus is on applied mathematics topics based on differential equations and linear algebra. Priority will be given to submissions that are likely to appeal to a wide audience.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信