On a nonautonomous nonlinear model for cell growth and division

IF 2.9 2区 数学 Q1 MATHEMATICS, APPLIED
Qihua Huang, Jie Ou, Xiumei Deng
{"title":"On a nonautonomous nonlinear model for cell growth and division","authors":"Qihua Huang,&nbsp;Jie Ou,&nbsp;Xiumei Deng","doi":"10.1016/j.aml.2025.109528","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we propose and analyze a nonautonomous, nonlinear size-structured population model that describes the growth and division of cells. By applying the monotone method based on a comparison principle, we establish the well-posedness of the model. We then investigate the long-term behavior of the solution using the upper–lower solution approach. Specifically, we derive conditions on the model parameters that determine the persistence or extinction of the cell population.</div></div>","PeriodicalId":55497,"journal":{"name":"Applied Mathematics Letters","volume":"166 ","pages":"Article 109528"},"PeriodicalIF":2.9000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics Letters","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0893965925000783","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we propose and analyze a nonautonomous, nonlinear size-structured population model that describes the growth and division of cells. By applying the monotone method based on a comparison principle, we establish the well-posedness of the model. We then investigate the long-term behavior of the solution using the upper–lower solution approach. Specifically, we derive conditions on the model parameters that determine the persistence or extinction of the cell population.
细胞生长和分裂的非自治非线性模型
在本文中,我们提出并分析了一个描述细胞生长和分裂的非自治、非线性大小结构群体模型。采用基于比较原理的单调法,建立了模型的适定性。然后,我们使用上下解方法研究解决方案的长期行为。具体地说,我们推导了决定细胞群体持续或灭绝的模型参数的条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied Mathematics Letters
Applied Mathematics Letters 数学-应用数学
CiteScore
7.70
自引率
5.40%
发文量
347
审稿时长
10 days
期刊介绍: The purpose of Applied Mathematics Letters is to provide a means of rapid publication for important but brief applied mathematical papers. The brief descriptions of any work involving a novel application or utilization of mathematics, or a development in the methodology of applied mathematics is a potential contribution for this journal. This journal''s focus is on applied mathematics topics based on differential equations and linear algebra. Priority will be given to submissions that are likely to appeal to a wide audience.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信