Applied Mathematics Letters最新文献

筛选
英文 中文
Propagation direction of traveling waves for a class of nonlocal dispersal bistable epidemic models 一类非局部扩散双稳态流行病模型的行波传播方向
IF 2.9 2区 数学
Applied Mathematics Letters Pub Date : 2025-01-11 DOI: 10.1016/j.aml.2025.109458
Yu-Xia Hao, Guo-Bao Zhang
{"title":"Propagation direction of traveling waves for a class of nonlocal dispersal bistable epidemic models","authors":"Yu-Xia Hao,&nbsp;Guo-Bao Zhang","doi":"10.1016/j.aml.2025.109458","DOIUrl":"10.1016/j.aml.2025.109458","url":null,"abstract":"<div><div>This work is devoted to studying the propagation direction of the following nonlocal dispersal epidemic model <span><span><span>(0.1)</span><span><math><mfenced><mrow><mtable><mtr><mtd><mfrac><mrow><mi>∂</mi><mi>u</mi></mrow><mrow><mi>∂</mi><mi>t</mi></mrow></mfrac></mtd><mtd><mo>=</mo><msub><mrow><mi>d</mi></mrow><mrow><mn>1</mn></mrow></msub><mfenced><mrow><msub><mrow><mo>∫</mo></mrow><mrow><mi>R</mi></mrow></msub><mi>J</mi><mrow><mo>(</mo><mi>y</mi><mo>−</mo><mi>x</mi><mo>)</mo></mrow><mi>u</mi><mrow><mo>(</mo><mi>y</mi><mo>,</mo><mi>t</mi><mo>)</mo></mrow><mi>d</mi><mi>y</mi><mo>−</mo><mi>u</mi></mrow></mfenced><mo>−</mo><mi>u</mi><mo>+</mo><mi>α</mi><mi>v</mi><mo>,</mo><mspace></mspace><mspace></mspace><mspace></mspace><mspace></mspace><mspace></mspace><mspace></mspace></mtd><mtd></mtd><mtd><mi>x</mi><mo>∈</mo><mi>R</mi><mo>,</mo><mspace></mspace><mi>t</mi><mo>&gt;</mo><mn>0</mn><mo>,</mo></mtd></mtr><mtr><mtd><mfrac><mrow><mi>∂</mi><mi>v</mi></mrow><mrow><mi>∂</mi><mi>t</mi></mrow></mfrac></mtd><mtd><mo>=</mo><msub><mrow><mi>d</mi></mrow><mrow><mn>2</mn></mrow></msub><mfenced><mrow><msub><mrow><mo>∫</mo></mrow><mrow><mi>R</mi></mrow></msub><mi>J</mi><mrow><mo>(</mo><mi>y</mi><mo>−</mo><mi>x</mi><mo>)</mo></mrow><mi>v</mi><mrow><mo>(</mo><mi>y</mi><mo>,</mo><mi>t</mi><mo>)</mo></mrow><mi>d</mi><mi>y</mi><mo>−</mo><mi>v</mi></mrow></mfenced><mo>−</mo><mi>β</mi><mi>v</mi><mo>+</mo><mi>g</mi><mrow><mo>(</mo><mi>u</mi><mo>)</mo></mrow><mo>,</mo><mspace></mspace><mspace></mspace><mspace></mspace><mspace></mspace></mtd><mtd></mtd><mtd><mi>x</mi><mo>∈</mo><mi>R</mi><mo>,</mo><mspace></mspace><mi>t</mi><mo>&gt;</mo><mn>0</mn><mo>,</mo></mtd></mtr></mtable></mrow></mfenced></math></span></span></span>where <span><math><mrow><msub><mrow><mi>d</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mspace></mspace><msub><mrow><mi>d</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><mspace></mspace><mi>α</mi><mo>,</mo><mspace></mspace><mi>β</mi><mo>&gt;</mo><mn>0</mn></mrow></math></span>. By discussing the case <span><math><mrow><mi>c</mi><mo>=</mo><mn>0</mn></mrow></math></span> and using the monotone dependence of the wave speed of traveling wave solutions on parameters, we state the sufficient conditions for the speed <span><math><mrow><mi>c</mi><mo>&gt;</mo><mn>0</mn></mrow></math></span> and <span><math><mrow><mi>c</mi><mo>&lt;</mo><mn>0</mn></mrow></math></span> under some calculations and analysis. Compared to the known works for classical diffusive epidemic models, we have to overcome difficulties due to the appearance of nonlocal dispersal operators in the current paper.</div></div>","PeriodicalId":55497,"journal":{"name":"Applied Mathematics Letters","volume":"163 ","pages":"Article 109458"},"PeriodicalIF":2.9,"publicationDate":"2025-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142990373","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A shape-parameterized RBF-partition of unity technique for PDEs pde的形状参数化rbf分割技术
IF 2.9 2区 数学
Applied Mathematics Letters Pub Date : 2025-01-10 DOI: 10.1016/j.aml.2024.109453
Roberto Cavoretto, Alessandra De Rossi, Adeeba Haider
{"title":"A shape-parameterized RBF-partition of unity technique for PDEs","authors":"Roberto Cavoretto,&nbsp;Alessandra De Rossi,&nbsp;Adeeba Haider","doi":"10.1016/j.aml.2024.109453","DOIUrl":"10.1016/j.aml.2024.109453","url":null,"abstract":"<div><div>In this paper, we study a direct discretization technique based on a radial basis function partition of unity (RBF-PU) method, which is built to numerically solve partial differential equations (PDEs). Unlike commonly used shape parameter free polyharmonic spline kernels, in this work we focus on local radial kernels depending on the shape parameter associated with the basis functions. The resulting scheme generally leads to more flexibility and accuracy, in particular when a polynomial term is added to the local RBF expansion. To emphasize the benefits deriving from use of the direct approach, we also compare it with the RBF finite difference (RBF-FD) method both in terms of computational efficiency and accuracy. Numerical results show the method performance by solving some elliptic PDE problems.</div></div>","PeriodicalId":55497,"journal":{"name":"Applied Mathematics Letters","volume":"163 ","pages":"Article 109453"},"PeriodicalIF":2.9,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142990374","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Darboux transformations and exact solutions of nonlocal Kaup–Newell equations with variable coefficients 变系数非局部kap - newell方程的达布变换和精确解
IF 2.9 2区 数学
Applied Mathematics Letters Pub Date : 2025-01-09 DOI: 10.1016/j.aml.2025.109456
Chen Wang, Yue Shi, Weiao Yang, Xiangpeng Xin
{"title":"Darboux transformations and exact solutions of nonlocal Kaup–Newell equations with variable coefficients","authors":"Chen Wang,&nbsp;Yue Shi,&nbsp;Weiao Yang,&nbsp;Xiangpeng Xin","doi":"10.1016/j.aml.2025.109456","DOIUrl":"10.1016/j.aml.2025.109456","url":null,"abstract":"<div><div>This paper investigates an integrable nonlocal Kaup–Newell (NKN) equation with variable coefficients. Utilizing Lax pair theory, the construction of the variable coefficient NKN equation is presented for the first time, alongside a systematic analysis employing the Darboux transform technique. This approach explicitly derives the form of the nth-order Darboux transform, which is presented for the first time. The article offers a thorough explanation of the derivation process for the second-order Darboux transform using Cramer’s rule, further extending this to propose a general formula for the <span><math><mi>n</mi></math></span>th Darboux transform applicable to multi-parameter scenarios. By applying a zero-seed solution, the exact solution of the variable coefficient NKN equation is obtained. To explore the influence of different coefficient functions on the solutions, specific coefficient functions are selected, and their corresponding graphical representations are analyzed, uncovering a range of solution types, including single soliton solutions, multi-solitons, rogue wave solutions, mixed twisted soliton solutions and breather wave solutions. Through the comprehensive analysis of these solutions, the study underscores the significant enhancement in modeling accuracy when time- and space-dependent coefficients are incorporated into the NKN equations, particularly in the context of simulating the dynamic behavior of nonlinear waves in real-world applications.</div></div>","PeriodicalId":55497,"journal":{"name":"Applied Mathematics Letters","volume":"163 ","pages":"Article 109456"},"PeriodicalIF":2.9,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142990375","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Higher-order freak waves of the AB system revisited via a variable separation method 通过变量分离方法重新研究了AB系统的高阶异常波
IF 2.9 2区 数学
Applied Mathematics Letters Pub Date : 2025-01-07 DOI: 10.1016/j.aml.2025.109454
Minjie Dong , Xiubin Wang
{"title":"Higher-order freak waves of the AB system revisited via a variable separation method","authors":"Minjie Dong ,&nbsp;Xiubin Wang","doi":"10.1016/j.aml.2025.109454","DOIUrl":"10.1016/j.aml.2025.109454","url":null,"abstract":"<div><div>In this work, we theoretically calculate higher-order freak wave solutions of the AB system through a Darboux transformation by a separation of variable method. Furthermore, the dynamics of first-order and second-order freak wave solutions are discussed with some illustrative graphics. In particular, we observe the emergence of a four peaky-shaped freak wave in the second component, which contrasts with the previously reported four eye-shaped waves.</div></div>","PeriodicalId":55497,"journal":{"name":"Applied Mathematics Letters","volume":"163 ","pages":"Article 109454"},"PeriodicalIF":2.9,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142968144","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Elliptic Neumann problems with highly discontinuous nonlinearities 具有高度不连续非线性的椭圆Neumann问题
IF 2.9 2区 数学
Applied Mathematics Letters Pub Date : 2025-01-07 DOI: 10.1016/j.aml.2025.109455
Giuseppina D’Aguì , Valeria Morabito , Patrick Winkert
{"title":"Elliptic Neumann problems with highly discontinuous nonlinearities","authors":"Giuseppina D’Aguì ,&nbsp;Valeria Morabito ,&nbsp;Patrick Winkert","doi":"10.1016/j.aml.2025.109455","DOIUrl":"10.1016/j.aml.2025.109455","url":null,"abstract":"<div><div>This paper investigates nonlinear differential problems involving the <span><math><mi>p</mi></math></span>-Laplace operator and subject to Neumann boundary value conditions whereby the right-hand side consists of a nonlinearity which is highly discontinuous. Using variational methods suitable for nonsmooth functionals, we prove the existence of at least two nontrivial weak solutions of such problems.</div></div>","PeriodicalId":55497,"journal":{"name":"Applied Mathematics Letters","volume":"163 ","pages":"Article 109455"},"PeriodicalIF":2.9,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142968145","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Limit solutions of loop solitons for a compound WKI-SP equation 一类复合WKI-SP方程环孤子的极限解
IF 2.9 2区 数学
Applied Mathematics Letters Pub Date : 2025-01-06 DOI: 10.1016/j.aml.2024.109452
Gaizhu Qu , Junyang Zhang , Xiaorui Hu , Shoufeng Shen
{"title":"Limit solutions of loop solitons for a compound WKI-SP equation","authors":"Gaizhu Qu ,&nbsp;Junyang Zhang ,&nbsp;Xiaorui Hu ,&nbsp;Shoufeng Shen","doi":"10.1016/j.aml.2024.109452","DOIUrl":"10.1016/j.aml.2024.109452","url":null,"abstract":"<div><div>We characterize the limit solutions of loop solitons for an integrable compound equation which is a mix of the Wadati-Konno-Ichikawa (WKI) equation and the short-pulse (SP) equation. We do so by taking an ingenious limit on the <span><math><mi>τ</mi></math></span>-function derived from Hirota’s bilinear equations of the mKdV-SG (modified Korteweg–de Vries and sine-Gordon) equation. By virtue of a hodograph transformation, we compute the limit solution of 2-loop (noted as <span><math><msub><mrow><mi>L</mi></mrow><mrow><mn>2</mn><mo>−</mo><mi>l</mi><mi>o</mi><mi>o</mi><mi>p</mi></mrow></msub></math></span>) soliton and discuss the interactions between two <span><math><msub><mrow><mi>L</mi></mrow><mrow><mn>2</mn><mo>−</mo><mi>l</mi><mi>o</mi><mi>o</mi><mi>p</mi></mrow></msub></math></span> solitons in detail. One singlevalued and two nonsinglevalued limit solutions of 2-breather solution are presented at last.</div></div>","PeriodicalId":55497,"journal":{"name":"Applied Mathematics Letters","volume":"163 ","pages":"Article 109452"},"PeriodicalIF":2.9,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142968148","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Energy of steady periodic equatorial water waves in two-layer flows 两层流中稳定周期赤道水波的能量
IF 2.9 2区 数学
Applied Mathematics Letters Pub Date : 2025-01-04 DOI: 10.1016/j.aml.2024.109450
Xun Wang , Sanling Yuan , Jin Zhao
{"title":"Energy of steady periodic equatorial water waves in two-layer flows","authors":"Xun Wang ,&nbsp;Sanling Yuan ,&nbsp;Jin Zhao","doi":"10.1016/j.aml.2024.109450","DOIUrl":"10.1016/j.aml.2024.109450","url":null,"abstract":"<div><div>In this paper, we present the Euler equation of steady periodic equatorial water waves in two-layer flows with different densities and generalise the two Stokes’ definitions for the velocity of the wave propagation. We further demonstrate that the excess potential energy density of nonlinear equatorial two-layer waves is always positive, while the excess kinetic energy density is negative.</div></div>","PeriodicalId":55497,"journal":{"name":"Applied Mathematics Letters","volume":"163 ","pages":"Article 109450"},"PeriodicalIF":2.9,"publicationDate":"2025-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142968149","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On a Camassa–Holm type equation describing the dynamics of viscous fluid conduits 描述粘性流体管道动力学的Camassa-Holm型方程
IF 2.9 2区 数学
Applied Mathematics Letters Pub Date : 2025-01-04 DOI: 10.1016/j.aml.2024.109443
Rafael Granero-Belinchón
{"title":"On a Camassa–Holm type equation describing the dynamics of viscous fluid conduits","authors":"Rafael Granero-Belinchón","doi":"10.1016/j.aml.2024.109443","DOIUrl":"10.1016/j.aml.2024.109443","url":null,"abstract":"<div><div>In this note we derive a new nonlocal and nonlinear dispersive equations capturing the main dynamics of a circular interface separating a light, viscous fluid rising buoyantly through a heavy, more viscous, miscible fluid at small Reynolds numbers. This equation that we termed the <span><math><mrow><mi>g</mi><mo>−</mo></mrow></math></span>model shares some common structure with the Camassa–Holm equation but has additional nonlocal effects. For this new PDE we study the well-posedness together with the existence of periodic traveling waves. Furthermore, we also show some numerical simulations suggesting the finite time singularity formation.</div></div>","PeriodicalId":55497,"journal":{"name":"Applied Mathematics Letters","volume":"163 ","pages":"Article 109443"},"PeriodicalIF":2.9,"publicationDate":"2025-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142968150","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exponential stability of a diffusive Nicholson’s blowflies equation accompanying multiple time-varying delays
IF 2.9 2区 数学
Applied Mathematics Letters Pub Date : 2025-01-04 DOI: 10.1016/j.aml.2024.109451
Chuangxia Huang , Bingwen Liu
{"title":"Exponential stability of a diffusive Nicholson’s blowflies equation accompanying multiple time-varying delays","authors":"Chuangxia Huang ,&nbsp;Bingwen Liu","doi":"10.1016/j.aml.2024.109451","DOIUrl":"10.1016/j.aml.2024.109451","url":null,"abstract":"<div><div>In this paper, we explore a modified diffusive Nicholson’s blowflies equation accompanying multiple pairs of time-varying delays which include distinct diapause and maturation effects. With the help of some differential inequality analyses, we obtain a criterion to assure the stability and exponential attraction of the addressed reaction–diffusion equation accompanying Neumann boundary conditions, which fully refines and generalizes some existing ones.</div></div>","PeriodicalId":55497,"journal":{"name":"Applied Mathematics Letters","volume":"163 ","pages":"Article 109451"},"PeriodicalIF":2.9,"publicationDate":"2025-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143096578","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A strong mass conservative finite element method for the Navier–Stokes/Darcy coupled system Navier-Stokes /Darcy耦合系统的强质量保守有限元方法
IF 2.9 2区 数学
Applied Mathematics Letters Pub Date : 2025-01-03 DOI: 10.1016/j.aml.2024.109447
Jessika Camaño , Ricardo Oyarzúa , Miguel Serón , Manuel Solano
{"title":"A strong mass conservative finite element method for the Navier–Stokes/Darcy coupled system","authors":"Jessika Camaño ,&nbsp;Ricardo Oyarzúa ,&nbsp;Miguel Serón ,&nbsp;Manuel Solano","doi":"10.1016/j.aml.2024.109447","DOIUrl":"10.1016/j.aml.2024.109447","url":null,"abstract":"<div><div>We revisit the continuous formulation introduced in Discacciati and Oyarzúa (2017) for the stationary Navier–Stokes/Darcy (NSD) coupled system and propose an equivalent scheme that does not require a Lagrange multiplier to enforce the continuity of normal velocities at the interface. Building on this formulation and following a similar approach to Kanschat and Rivière (2010), we derive a mass-conservative, <span><math><mrow><mi>H</mi><mrow><mo>(</mo><mi>div</mi><mo>)</mo></mrow></mrow></math></span>–conforming finite element method for the NSD system.</div></div>","PeriodicalId":55497,"journal":{"name":"Applied Mathematics Letters","volume":"163 ","pages":"Article 109447"},"PeriodicalIF":2.9,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142968153","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信