傅里叶超越色散:亥姆霍兹方程fdm的波数显式和精确精度

IF 2.9 2区 数学 Q1 MATHEMATICS, APPLIED
Hui Zhang
{"title":"傅里叶超越色散:亥姆霍兹方程fdm的波数显式和精确精度","authors":"Hui Zhang","doi":"10.1016/j.aml.2025.109576","DOIUrl":null,"url":null,"abstract":"<div><div>We propose a practical tool for evaluating and comparing the accuracy of FDMs for the Helmholtz equation. The tool based on Fourier analysis makes it easy to find wavenumber explicit order of convergence, and can be used for rigorous proof. It fills in the gap between the dispersion analysis and the actual error with source term. We illustrate it for classical and some dispersion free schemes in 1D, with conclusions verified by numerical experiments.</div></div>","PeriodicalId":55497,"journal":{"name":"Applied Mathematics Letters","volume":"168 ","pages":"Article 109576"},"PeriodicalIF":2.9000,"publicationDate":"2025-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fourier beyond dispersion: Wavenumber explicit and precise accuracy of FDMs for the Helmholtz equation\",\"authors\":\"Hui Zhang\",\"doi\":\"10.1016/j.aml.2025.109576\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We propose a practical tool for evaluating and comparing the accuracy of FDMs for the Helmholtz equation. The tool based on Fourier analysis makes it easy to find wavenumber explicit order of convergence, and can be used for rigorous proof. It fills in the gap between the dispersion analysis and the actual error with source term. We illustrate it for classical and some dispersion free schemes in 1D, with conclusions verified by numerical experiments.</div></div>\",\"PeriodicalId\":55497,\"journal\":{\"name\":\"Applied Mathematics Letters\",\"volume\":\"168 \",\"pages\":\"Article 109576\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-04-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Mathematics Letters\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0893965925001260\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics Letters","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0893965925001260","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了一个实用的工具来评估和比较fdm对亥姆霍兹方程的精度。基于傅里叶分析的工具可以很容易地找到波数的显式收敛阶,并且可以用于严格的证明。它用源项填补了色散分析与实际误差之间的空白。我们对一维的经典格式和一些无色散格式进行了说明,并通过数值实验验证了结论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fourier beyond dispersion: Wavenumber explicit and precise accuracy of FDMs for the Helmholtz equation
We propose a practical tool for evaluating and comparing the accuracy of FDMs for the Helmholtz equation. The tool based on Fourier analysis makes it easy to find wavenumber explicit order of convergence, and can be used for rigorous proof. It fills in the gap between the dispersion analysis and the actual error with source term. We illustrate it for classical and some dispersion free schemes in 1D, with conclusions verified by numerical experiments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Mathematics Letters
Applied Mathematics Letters 数学-应用数学
CiteScore
7.70
自引率
5.40%
发文量
347
审稿时长
10 days
期刊介绍: The purpose of Applied Mathematics Letters is to provide a means of rapid publication for important but brief applied mathematical papers. The brief descriptions of any work involving a novel application or utilization of mathematics, or a development in the methodology of applied mathematics is a potential contribution for this journal. This journal''s focus is on applied mathematics topics based on differential equations and linear algebra. Priority will be given to submissions that are likely to appeal to a wide audience.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信