具有标准发病率和反应扩散的随机SVI流行病模型的持续和消

IF 2.9 2区 数学 Q1 MATHEMATICS, APPLIED
Tan Su, Yonggui Kao, Daqing Jiang
{"title":"具有标准发病率和反应扩散的随机SVI流行病模型的持续和消","authors":"Tan Su,&nbsp;Yonggui Kao,&nbsp;Daqing Jiang","doi":"10.1016/j.aml.2025.109579","DOIUrl":null,"url":null,"abstract":"<div><div>Considering the important effects of population diffusion and vaccine ineffectiveness on disease transmission, a stochastic SVI (Susceptible–Vaccinated–Infected) epidemic model with reaction–diffusion is mainly investigated in this paper. We prove the existence of the unique global positive strong solution by an innovative variable transformation. The sufficient conditions for disease persistence and exponential extinction are also established by suitable Lyapunov functions.</div></div>","PeriodicalId":55497,"journal":{"name":"Applied Mathematics Letters","volume":"168 ","pages":"Article 109579"},"PeriodicalIF":2.9000,"publicationDate":"2025-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Persistence and extinction of a stochastic SVI epidemic model with standard incidence and reaction–diffusion\",\"authors\":\"Tan Su,&nbsp;Yonggui Kao,&nbsp;Daqing Jiang\",\"doi\":\"10.1016/j.aml.2025.109579\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Considering the important effects of population diffusion and vaccine ineffectiveness on disease transmission, a stochastic SVI (Susceptible–Vaccinated–Infected) epidemic model with reaction–diffusion is mainly investigated in this paper. We prove the existence of the unique global positive strong solution by an innovative variable transformation. The sufficient conditions for disease persistence and exponential extinction are also established by suitable Lyapunov functions.</div></div>\",\"PeriodicalId\":55497,\"journal\":{\"name\":\"Applied Mathematics Letters\",\"volume\":\"168 \",\"pages\":\"Article 109579\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Mathematics Letters\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0893965925001296\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics Letters","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0893965925001296","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

考虑到种群扩散和疫苗无效对疾病传播的重要影响,本文主要研究了反应扩散的随机SVI(易感-接种-感染)流行病模型。通过一种创新的变量变换,证明了唯一全局正强解的存在性。通过适当的Lyapunov函数建立了疾病持续和指数灭绝的充分条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Persistence and extinction of a stochastic SVI epidemic model with standard incidence and reaction–diffusion
Considering the important effects of population diffusion and vaccine ineffectiveness on disease transmission, a stochastic SVI (Susceptible–Vaccinated–Infected) epidemic model with reaction–diffusion is mainly investigated in this paper. We prove the existence of the unique global positive strong solution by an innovative variable transformation. The sufficient conditions for disease persistence and exponential extinction are also established by suitable Lyapunov functions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Mathematics Letters
Applied Mathematics Letters 数学-应用数学
CiteScore
7.70
自引率
5.40%
发文量
347
审稿时长
10 days
期刊介绍: The purpose of Applied Mathematics Letters is to provide a means of rapid publication for important but brief applied mathematical papers. The brief descriptions of any work involving a novel application or utilization of mathematics, or a development in the methodology of applied mathematics is a potential contribution for this journal. This journal''s focus is on applied mathematics topics based on differential equations and linear algebra. Priority will be given to submissions that are likely to appeal to a wide audience.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信