{"title":"液晶可压缩流动的大型全球解决方案","authors":"Hui Ou, Hongyun Peng","doi":"10.1016/j.aml.2025.109578","DOIUrl":null,"url":null,"abstract":"<div><div>We construct the global large solutions for the compressible flow of liquid crystals in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mn>3</mn></mrow></msup></math></span>. This class of data relax the smallness restriction imposed on the the initial incompressible velocity. Particularly, our work improves upon previous studies by Hu and Wu (2013) and Zhai (2025).</div></div>","PeriodicalId":55497,"journal":{"name":"Applied Mathematics Letters","volume":"168 ","pages":"Article 109578"},"PeriodicalIF":2.9000,"publicationDate":"2025-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Large global solutions to the compressible flow of liquid crystals\",\"authors\":\"Hui Ou, Hongyun Peng\",\"doi\":\"10.1016/j.aml.2025.109578\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We construct the global large solutions for the compressible flow of liquid crystals in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mn>3</mn></mrow></msup></math></span>. This class of data relax the smallness restriction imposed on the the initial incompressible velocity. Particularly, our work improves upon previous studies by Hu and Wu (2013) and Zhai (2025).</div></div>\",\"PeriodicalId\":55497,\"journal\":{\"name\":\"Applied Mathematics Letters\",\"volume\":\"168 \",\"pages\":\"Article 109578\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-04-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Mathematics Letters\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0893965925001284\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics Letters","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0893965925001284","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Large global solutions to the compressible flow of liquid crystals
We construct the global large solutions for the compressible flow of liquid crystals in . This class of data relax the smallness restriction imposed on the the initial incompressible velocity. Particularly, our work improves upon previous studies by Hu and Wu (2013) and Zhai (2025).
期刊介绍:
The purpose of Applied Mathematics Letters is to provide a means of rapid publication for important but brief applied mathematical papers. The brief descriptions of any work involving a novel application or utilization of mathematics, or a development in the methodology of applied mathematics is a potential contribution for this journal. This journal''s focus is on applied mathematics topics based on differential equations and linear algebra. Priority will be given to submissions that are likely to appeal to a wide audience.