Oscillation theorems for linear Hamiltonian systems with nonlinear dependence on the spectral parameter and separated boundary conditions

IF 2.8 2区 数学 Q1 MATHEMATICS, APPLIED
Julia Elyseeva, Natalia Rogozina
{"title":"Oscillation theorems for linear Hamiltonian systems with nonlinear dependence on the spectral parameter and separated boundary conditions","authors":"Julia Elyseeva,&nbsp;Natalia Rogozina","doi":"10.1016/j.aml.2025.109740","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we consider linear Hamiltonian differential systems which depend in general nonlinearly on the spectral parameter and with separated boundary conditions. In our consideration we do not impose any controllability and strict normality assumptions and omit the Legendre condition for the Hamiltonian. The main results generalize our previous investigations for the Hamiltonian spectral problems with Dirichlet boundary conditions. We prove the local and global oscillation theorems relating the number of left finite eigenvalues of the problem in the given interval with the values of the oscillation numbers at the end points of this interval.</div></div>","PeriodicalId":55497,"journal":{"name":"Applied Mathematics Letters","volume":"173 ","pages":"Article 109740"},"PeriodicalIF":2.8000,"publicationDate":"2025-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics Letters","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0893965925002903","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we consider linear Hamiltonian differential systems which depend in general nonlinearly on the spectral parameter and with separated boundary conditions. In our consideration we do not impose any controllability and strict normality assumptions and omit the Legendre condition for the Hamiltonian. The main results generalize our previous investigations for the Hamiltonian spectral problems with Dirichlet boundary conditions. We prove the local and global oscillation theorems relating the number of left finite eigenvalues of the problem in the given interval with the values of the oscillation numbers at the end points of this interval.
具有谱参数和分离边界条件非线性依赖的线性哈密顿系统的振动定理
本文考虑具有分离边界条件的谱参数一般非线性依赖的线性哈密顿微分系统。在我们的考虑中,我们没有强加任何可控性和严格的正态性假设,并且省略了哈密顿量的勒让德条件。本文的主要结果推广了我们对具有狄利克雷边界条件的哈密顿谱问题的研究。证明了给定区间内问题的左有限特征值数与区间端点处的振荡数之间的局部振荡定理和全局振荡定理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied Mathematics Letters
Applied Mathematics Letters 数学-应用数学
CiteScore
7.70
自引率
5.40%
发文量
347
审稿时长
10 days
期刊介绍: The purpose of Applied Mathematics Letters is to provide a means of rapid publication for important but brief applied mathematical papers. The brief descriptions of any work involving a novel application or utilization of mathematics, or a development in the methodology of applied mathematics is a potential contribution for this journal. This journal''s focus is on applied mathematics topics based on differential equations and linear algebra. Priority will be given to submissions that are likely to appeal to a wide audience.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信