具有平均曲率算子和周期系数的差分方程的同斜解

IF 2.8 2区 数学 Q1 MATHEMATICS, APPLIED
Xiaoguang Li , Zhan Zhou
{"title":"具有平均曲率算子和周期系数的差分方程的同斜解","authors":"Xiaoguang Li ,&nbsp;Zhan Zhou","doi":"10.1016/j.aml.2025.109737","DOIUrl":null,"url":null,"abstract":"<div><div>We establish the existence of nontrivial homoclinic solutions for a class of difference equation with the mean curvature operator and periodic potentials via variational methods. Specifically, a novel approach inspired by the <em>vanishing</em> in the <em>concentration–compactness principle</em> is employed to prove the boundedness of Cerami sequences. Finally, we investigate the strict monotonicity and sign-definiteness of the obtained homoclinic solution, which have rarely been discussed.</div></div>","PeriodicalId":55497,"journal":{"name":"Applied Mathematics Letters","volume":"172 ","pages":"Article 109737"},"PeriodicalIF":2.8000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Homoclinic solutions for a difference equation with the mean curvature operator and periodic coefficients\",\"authors\":\"Xiaoguang Li ,&nbsp;Zhan Zhou\",\"doi\":\"10.1016/j.aml.2025.109737\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We establish the existence of nontrivial homoclinic solutions for a class of difference equation with the mean curvature operator and periodic potentials via variational methods. Specifically, a novel approach inspired by the <em>vanishing</em> in the <em>concentration–compactness principle</em> is employed to prove the boundedness of Cerami sequences. Finally, we investigate the strict monotonicity and sign-definiteness of the obtained homoclinic solution, which have rarely been discussed.</div></div>\",\"PeriodicalId\":55497,\"journal\":{\"name\":\"Applied Mathematics Letters\",\"volume\":\"172 \",\"pages\":\"Article 109737\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Mathematics Letters\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0893965925002873\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics Letters","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0893965925002873","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

利用变分方法,建立了一类具有平均曲率算子和周期势的差分方程非平凡同斜解的存在性。具体来说,利用浓度-紧致原理中的消失原理来证明陶瓷序列的有界性。最后,我们研究了所得到的同斜解的严格单调性和符号确定性,这是以往很少讨论的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Homoclinic solutions for a difference equation with the mean curvature operator and periodic coefficients
We establish the existence of nontrivial homoclinic solutions for a class of difference equation with the mean curvature operator and periodic potentials via variational methods. Specifically, a novel approach inspired by the vanishing in the concentration–compactness principle is employed to prove the boundedness of Cerami sequences. Finally, we investigate the strict monotonicity and sign-definiteness of the obtained homoclinic solution, which have rarely been discussed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Mathematics Letters
Applied Mathematics Letters 数学-应用数学
CiteScore
7.70
自引率
5.40%
发文量
347
审稿时长
10 days
期刊介绍: The purpose of Applied Mathematics Letters is to provide a means of rapid publication for important but brief applied mathematical papers. The brief descriptions of any work involving a novel application or utilization of mathematics, or a development in the methodology of applied mathematics is a potential contribution for this journal. This journal''s focus is on applied mathematics topics based on differential equations and linear algebra. Priority will be given to submissions that are likely to appeal to a wide audience.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信