数据驱动弹性中某些Hilbert空间优化问题的数学结构和可解性

IF 2.8 2区 数学 Q1 MATHEMATICS, APPLIED
Cristian G. Gebhardt , Marc C. Steinbach
{"title":"数据驱动弹性中某些Hilbert空间优化问题的数学结构和可解性","authors":"Cristian G. Gebhardt ,&nbsp;Marc C. Steinbach","doi":"10.1016/j.aml.2025.109739","DOIUrl":null,"url":null,"abstract":"<div><div>In this theoretical study, we analyze the structure and solvability of data-driven elasticity problems in one spatial dimension. In contrast to Conti, Müller, Ortiz (2018, 2020), who develop an extensive, highly abstract theory for mixed Dirichlet–Neumann problems in arbitrary dimension, our setting provides a direct understanding of the problem structure and of the key issue of existence of minimizers in Hilbert space on a basic technical level. For Dirichlet problems with low regularity, we derive a reduced problem defined on orthogonal subspaces, we give explicit representations of all relevant spaces and operators, and we exploit the orthogonal decomposition to prove solvability for several standard cases and under certain symmetries. For mixed Dirichlet–Neumann problems, we prove universal solvability. In addition, we address the issue of thermomechanical consistency.</div></div>","PeriodicalId":55497,"journal":{"name":"Applied Mathematics Letters","volume":"172 ","pages":"Article 109739"},"PeriodicalIF":2.8000,"publicationDate":"2025-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the mathematical structure and solvability of certain Hilbert space optimization problems in data-driven elasticity\",\"authors\":\"Cristian G. Gebhardt ,&nbsp;Marc C. Steinbach\",\"doi\":\"10.1016/j.aml.2025.109739\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this theoretical study, we analyze the structure and solvability of data-driven elasticity problems in one spatial dimension. In contrast to Conti, Müller, Ortiz (2018, 2020), who develop an extensive, highly abstract theory for mixed Dirichlet–Neumann problems in arbitrary dimension, our setting provides a direct understanding of the problem structure and of the key issue of existence of minimizers in Hilbert space on a basic technical level. For Dirichlet problems with low regularity, we derive a reduced problem defined on orthogonal subspaces, we give explicit representations of all relevant spaces and operators, and we exploit the orthogonal decomposition to prove solvability for several standard cases and under certain symmetries. For mixed Dirichlet–Neumann problems, we prove universal solvability. In addition, we address the issue of thermomechanical consistency.</div></div>\",\"PeriodicalId\":55497,\"journal\":{\"name\":\"Applied Mathematics Letters\",\"volume\":\"172 \",\"pages\":\"Article 109739\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Mathematics Letters\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0893965925002897\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics Letters","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0893965925002897","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

在理论研究中,我们分析了数据驱动弹性问题在一个空间维度上的结构和可解性。Conti, m ller, Ortiz(2018,2020)对任意维的混合Dirichlet-Neumann问题提出了广泛而高度抽象的理论,与之相反,我们的设置在基本技术层面上提供了对问题结构和Hilbert空间中最小化存在的关键问题的直接理解。对于低正则性Dirichlet问题,我们得到了一个定义在正交子空间上的约简问题,给出了所有相关空间和算子的显式表示,并利用正交分解证明了在几种标准情况和某些对称条件下的可解性。对于混合Dirichlet-Neumann问题,证明了其全称可解性。此外,我们解决了热-机械一致性的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the mathematical structure and solvability of certain Hilbert space optimization problems in data-driven elasticity
In this theoretical study, we analyze the structure and solvability of data-driven elasticity problems in one spatial dimension. In contrast to Conti, Müller, Ortiz (2018, 2020), who develop an extensive, highly abstract theory for mixed Dirichlet–Neumann problems in arbitrary dimension, our setting provides a direct understanding of the problem structure and of the key issue of existence of minimizers in Hilbert space on a basic technical level. For Dirichlet problems with low regularity, we derive a reduced problem defined on orthogonal subspaces, we give explicit representations of all relevant spaces and operators, and we exploit the orthogonal decomposition to prove solvability for several standard cases and under certain symmetries. For mixed Dirichlet–Neumann problems, we prove universal solvability. In addition, we address the issue of thermomechanical consistency.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Mathematics Letters
Applied Mathematics Letters 数学-应用数学
CiteScore
7.70
自引率
5.40%
发文量
347
审稿时长
10 days
期刊介绍: The purpose of Applied Mathematics Letters is to provide a means of rapid publication for important but brief applied mathematical papers. The brief descriptions of any work involving a novel application or utilization of mathematics, or a development in the methodology of applied mathematics is a potential contribution for this journal. This journal''s focus is on applied mathematics topics based on differential equations and linear algebra. Priority will be given to submissions that are likely to appeal to a wide audience.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信