约束四元数矩阵的低秩逼近及以后

IF 2.8 2区 数学 Q1 MATHEMATICS, APPLIED
Zhijie Wang , Liangtian He , Jifei Miao , Liang-Jian Deng , Jun Liu
{"title":"约束四元数矩阵的低秩逼近及以后","authors":"Zhijie Wang ,&nbsp;Liangtian He ,&nbsp;Jifei Miao ,&nbsp;Liang-Jian Deng ,&nbsp;Jun Liu","doi":"10.1016/j.aml.2025.109724","DOIUrl":null,"url":null,"abstract":"<div><div>Pure quaternion matrices have been widely used in color image processing. However, existing methods often overlook a fundamental fact: the pixels of an image in <span><math><mi>b</mi></math></span>-bit format can only take integer values from the set <span><math><mrow><mo>{</mo><mn>0</mn><mo>,</mo><mo>…</mo><mo>,</mo><msup><mrow><mn>2</mn></mrow><mrow><mi>b</mi></mrow></msup><mo>−</mo><mn>1</mn><mo>}</mo></mrow></math></span>. In this paper, we consider this important constraint and propose a constrained model that simultaneously incorporates the pure, integer and box constraints for low-rank quaternion matrix approximation. Our model can precisely obtain the optimal fixed-rank approximation while preserving these essential properties of quaternion matrices. Furthermore, we introduce a universal framework for constrained low-rank quaternion matrix completion tailored to color image inpainting, supported by rigorous theoretical convergence analysis. Experimental results demonstrate the superiority of our algorithms over state-of-the-art methods.</div></div>","PeriodicalId":55497,"journal":{"name":"Applied Mathematics Letters","volume":"172 ","pages":"Article 109724"},"PeriodicalIF":2.8000,"publicationDate":"2025-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Constrained low-rank approximation of quaternion matrices and beyond\",\"authors\":\"Zhijie Wang ,&nbsp;Liangtian He ,&nbsp;Jifei Miao ,&nbsp;Liang-Jian Deng ,&nbsp;Jun Liu\",\"doi\":\"10.1016/j.aml.2025.109724\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Pure quaternion matrices have been widely used in color image processing. However, existing methods often overlook a fundamental fact: the pixels of an image in <span><math><mi>b</mi></math></span>-bit format can only take integer values from the set <span><math><mrow><mo>{</mo><mn>0</mn><mo>,</mo><mo>…</mo><mo>,</mo><msup><mrow><mn>2</mn></mrow><mrow><mi>b</mi></mrow></msup><mo>−</mo><mn>1</mn><mo>}</mo></mrow></math></span>. In this paper, we consider this important constraint and propose a constrained model that simultaneously incorporates the pure, integer and box constraints for low-rank quaternion matrix approximation. Our model can precisely obtain the optimal fixed-rank approximation while preserving these essential properties of quaternion matrices. Furthermore, we introduce a universal framework for constrained low-rank quaternion matrix completion tailored to color image inpainting, supported by rigorous theoretical convergence analysis. Experimental results demonstrate the superiority of our algorithms over state-of-the-art methods.</div></div>\",\"PeriodicalId\":55497,\"journal\":{\"name\":\"Applied Mathematics Letters\",\"volume\":\"172 \",\"pages\":\"Article 109724\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Mathematics Letters\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0893965925002745\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics Letters","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0893965925002745","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

纯四元数矩阵在彩色图像处理中得到了广泛的应用。然而,现有的方法往往忽略了一个基本事实:b位格式图像的像素只能从集合{0,…,2b−1}中取整数值。在本文中,我们考虑了这一重要约束,并提出了一个同时包含纯约束、整数约束和盒约束的低秩四元数矩阵近似约束模型。在保持四元数矩阵的这些基本性质的同时,我们的模型可以精确地得到最优的定秩逼近。此外,我们引入了一个适用于彩色图像绘制的约束低秩四元数矩阵补全的通用框架,并得到了严格的理论收敛分析的支持。实验结果表明,我们的算法优于最先进的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Constrained low-rank approximation of quaternion matrices and beyond
Pure quaternion matrices have been widely used in color image processing. However, existing methods often overlook a fundamental fact: the pixels of an image in b-bit format can only take integer values from the set {0,,2b1}. In this paper, we consider this important constraint and propose a constrained model that simultaneously incorporates the pure, integer and box constraints for low-rank quaternion matrix approximation. Our model can precisely obtain the optimal fixed-rank approximation while preserving these essential properties of quaternion matrices. Furthermore, we introduce a universal framework for constrained low-rank quaternion matrix completion tailored to color image inpainting, supported by rigorous theoretical convergence analysis. Experimental results demonstrate the superiority of our algorithms over state-of-the-art methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Mathematics Letters
Applied Mathematics Letters 数学-应用数学
CiteScore
7.70
自引率
5.40%
发文量
347
审稿时长
10 days
期刊介绍: The purpose of Applied Mathematics Letters is to provide a means of rapid publication for important but brief applied mathematical papers. The brief descriptions of any work involving a novel application or utilization of mathematics, or a development in the methodology of applied mathematics is a potential contribution for this journal. This journal''s focus is on applied mathematics topics based on differential equations and linear algebra. Priority will be given to submissions that are likely to appeal to a wide audience.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信