求解非线性方程组的随机柱块梯度下降法

IF 2.8 2区 数学 Q1 MATHEMATICS, APPLIED
Naiyu Jiang, Wendi Bao, Lili Xing, Weiguo Li
{"title":"求解非线性方程组的随机柱块梯度下降法","authors":"Naiyu Jiang,&nbsp;Wendi Bao,&nbsp;Lili Xing,&nbsp;Weiguo Li","doi":"10.1016/j.aml.2025.109735","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we propose a new stochastic column-block gradient descent method for solving nonlinear systems of equations. It has a descent direction and holds an approximately optimal step size obtained through an optimization problem. We provide a thorough convergence analysis, and derive an upper bound for the convergence rate of the new method. Numerical experiments demonstrate that the proposed method outperforms the existing ones.</div></div>","PeriodicalId":55497,"journal":{"name":"Applied Mathematics Letters","volume":"172 ","pages":"Article 109735"},"PeriodicalIF":2.8000,"publicationDate":"2025-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A stochastic column-block gradient descent method for solving nonlinear systems of equations\",\"authors\":\"Naiyu Jiang,&nbsp;Wendi Bao,&nbsp;Lili Xing,&nbsp;Weiguo Li\",\"doi\":\"10.1016/j.aml.2025.109735\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper, we propose a new stochastic column-block gradient descent method for solving nonlinear systems of equations. It has a descent direction and holds an approximately optimal step size obtained through an optimization problem. We provide a thorough convergence analysis, and derive an upper bound for the convergence rate of the new method. Numerical experiments demonstrate that the proposed method outperforms the existing ones.</div></div>\",\"PeriodicalId\":55497,\"journal\":{\"name\":\"Applied Mathematics Letters\",\"volume\":\"172 \",\"pages\":\"Article 109735\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Mathematics Letters\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S089396592500285X\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics Letters","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S089396592500285X","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种求解非线性方程组的随机柱块梯度下降法。它有一个下降方向,并保持通过优化问题得到的近似最优步长。对该方法进行了全面的收敛性分析,并给出了该方法收敛速度的上界。数值实验表明,该方法优于现有方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A stochastic column-block gradient descent method for solving nonlinear systems of equations
In this paper, we propose a new stochastic column-block gradient descent method for solving nonlinear systems of equations. It has a descent direction and holds an approximately optimal step size obtained through an optimization problem. We provide a thorough convergence analysis, and derive an upper bound for the convergence rate of the new method. Numerical experiments demonstrate that the proposed method outperforms the existing ones.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Mathematics Letters
Applied Mathematics Letters 数学-应用数学
CiteScore
7.70
自引率
5.40%
发文量
347
审稿时长
10 days
期刊介绍: The purpose of Applied Mathematics Letters is to provide a means of rapid publication for important but brief applied mathematical papers. The brief descriptions of any work involving a novel application or utilization of mathematics, or a development in the methodology of applied mathematics is a potential contribution for this journal. This journal''s focus is on applied mathematics topics based on differential equations and linear algebra. Priority will be given to submissions that are likely to appeal to a wide audience.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信