Journal of Knot Theory and Its Ramifications最新文献

筛选
英文 中文
Computation of the knot symmetric quandle and its application to the plat index of surface-links 绳结对称阶数的计算及其在表面链路 plat 指数中的应用
IF 0.5 4区 数学
Journal of Knot Theory and Its Ramifications Pub Date : 2024-04-30 DOI: 10.1142/s0218216524500056
Jumpei Yasuda
{"title":"Computation of the knot symmetric quandle and its application to the plat index of surface-links","authors":"Jumpei Yasuda","doi":"10.1142/s0218216524500056","DOIUrl":"https://doi.org/10.1142/s0218216524500056","url":null,"abstract":"<p>A surface-link is a closed surface embedded in the 4-space, possibly disconnected or non-orientable. Every surface-link can be presented by the plat closure of a braided surface, which we call a plat form presentation. The knot symmetric quandle of a surface-link <span><math altimg=\"eq-00001.gif\" display=\"inline\" overflow=\"scroll\"><mi>F</mi></math></span><span></span> is a pair of a quandle and a good involution determined from <span><math altimg=\"eq-00002.gif\" display=\"inline\" overflow=\"scroll\"><mi>F</mi></math></span><span></span>. In this paper, we compute the knot symmetric quandle for surface-links using a plat form presentation. As an application, we show that for any integers <span><math altimg=\"eq-00003.gif\" display=\"inline\" overflow=\"scroll\"><mi>g</mi><mo>≥</mo><mn>0</mn></math></span><span></span> and <span><math altimg=\"eq-00004.gif\" display=\"inline\" overflow=\"scroll\"><mi>m</mi><mo>≥</mo><mn>2</mn></math></span><span></span>, there exist infinitely many distinct surface-knots of genus <span><math altimg=\"eq-00005.gif\" display=\"inline\" overflow=\"scroll\"><mi>g</mi></math></span><span></span> whose plat indices are <span><math altimg=\"eq-00006.gif\" display=\"inline\" overflow=\"scroll\"><mi>m</mi></math></span><span></span>.</p>","PeriodicalId":54790,"journal":{"name":"Journal of Knot Theory and Its Ramifications","volume":"9 1","pages":""},"PeriodicalIF":0.5,"publicationDate":"2024-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140828851","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Coefficients of Catalan states of lattice crossing II: Applications of ΘA-state expansions 晶格交叉的加泰罗尼亚态系数 II: ΘA 态展开的应用
IF 0.5 4区 数学
Journal of Knot Theory and Its Ramifications Pub Date : 2024-04-18 DOI: 10.1142/s0218216524500032
Mieczyslaw K. Dabkowski, Cheyu Wu
{"title":"Coefficients of Catalan states of lattice crossing II: Applications of ΘA-state expansions","authors":"Mieczyslaw K. Dabkowski, Cheyu Wu","doi":"10.1142/s0218216524500032","DOIUrl":"https://doi.org/10.1142/s0218216524500032","url":null,"abstract":"<p>Plucking polynomial of a plane rooted tree with a delay function <span><math altimg=\"eq-00002.gif\" display=\"inline\" overflow=\"scroll\"><mi>α</mi></math></span><span></span> was introduced in 2014 by Przytycki. As shown in this paper, plucking polynomial factors when <span><math altimg=\"eq-00003.gif\" display=\"inline\" overflow=\"scroll\"><mi>α</mi></math></span><span></span> satisfies additional conditions. We use this result and <span><math altimg=\"eq-00004.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi mathvariant=\"normal\">Θ</mi></mrow><mrow><mi>A</mi></mrow></msub></math></span><span></span>-state expansion introduced in our previous work to derive new properties of coefficients <span><math altimg=\"eq-00005.gif\" display=\"inline\" overflow=\"scroll\"><mi>C</mi><mo stretchy=\"false\">(</mo><mi>A</mi><mo stretchy=\"false\">)</mo></math></span><span></span> of Catalan states <span><math altimg=\"eq-00006.gif\" display=\"inline\" overflow=\"scroll\"><mi>C</mi></math></span><span></span> resulting from an <span><math altimg=\"eq-00007.gif\" display=\"inline\" overflow=\"scroll\"><mo stretchy=\"false\">(</mo><mi>m</mi><mo stretchy=\"false\">×</mo><mi>n</mi><mo stretchy=\"false\">)</mo></math></span><span></span>-lattice crossing <span><math altimg=\"eq-00008.gif\" display=\"inline\" overflow=\"scroll\"><mi>L</mi><mo stretchy=\"false\">(</mo><mi>m</mi><mo>,</mo><mi>n</mi><mo stretchy=\"false\">)</mo></math></span><span></span>. In particular, we show that <span><math altimg=\"eq-00009.gif\" display=\"inline\" overflow=\"scroll\"><mi>C</mi><mo stretchy=\"false\">(</mo><mi>A</mi><mo stretchy=\"false\">)</mo></math></span><span></span> factors when <span><math altimg=\"eq-00010.gif\" display=\"inline\" overflow=\"scroll\"><mi>C</mi></math></span><span></span> has arcs with some special properties. In many instances, this yields a more efficient way for computing <span><math altimg=\"eq-00011.gif\" display=\"inline\" overflow=\"scroll\"><mi>C</mi><mo stretchy=\"false\">(</mo><mi>A</mi><mo stretchy=\"false\">)</mo></math></span><span></span>. As an application, we give closed-form formulas for coefficients of Catalan states of <span><math altimg=\"eq-00012.gif\" display=\"inline\" overflow=\"scroll\"><mi>L</mi><mo stretchy=\"false\">(</mo><mi>m</mi><mo>,</mo><mn>3</mn><mo stretchy=\"false\">)</mo></math></span><span></span>.</p>","PeriodicalId":54790,"journal":{"name":"Journal of Knot Theory and Its Ramifications","volume":"76 1","pages":""},"PeriodicalIF":0.5,"publicationDate":"2024-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140623948","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Knot quandle decomposition along a torus 沿环状线的结quandle分解
IF 0.5 4区 数学
Journal of Knot Theory and Its Ramifications Pub Date : 2024-03-22 DOI: 10.1142/s0218216523500980
Marco Bonatto, Alessia Cattabriga, Eva Horvat
{"title":"Knot quandle decomposition along a torus","authors":"Marco Bonatto, Alessia Cattabriga, Eva Horvat","doi":"10.1142/s0218216523500980","DOIUrl":"https://doi.org/10.1142/s0218216523500980","url":null,"abstract":"<p>We study the structure of the augmented fundamental quandle of a knot whose complement contains an incompressible torus. We obtain the relationship between the fundamental quandle of a satellite knot and the fundamental quandles/groups of its companion and pattern knots. General presentations of the fundamental quandles of a link in a solid torus, a link in a lens space and a satellite knot are described. In the last part of this paper, an algebraic approach to the study of affine quandles is presented and some known results about the Alexander module and quandle colorings are obtained.</p>","PeriodicalId":54790,"journal":{"name":"Journal of Knot Theory and Its Ramifications","volume":"19 1","pages":""},"PeriodicalIF":0.5,"publicationDate":"2024-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140199905","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Heegaard Floer invariants for cyclic 3-orbifolds 环状 3-orbifolds 的 Heegaard Floer 不变量
IF 0.5 4区 数学
Journal of Knot Theory and Its Ramifications Pub Date : 2024-03-22 DOI: 10.1142/s0218216523501031
Saibal Ganguli, Mainak Poddar
{"title":"Heegaard Floer invariants for cyclic 3-orbifolds","authors":"Saibal Ganguli, Mainak Poddar","doi":"10.1142/s0218216523501031","DOIUrl":"https://doi.org/10.1142/s0218216523501031","url":null,"abstract":"<p>We define a notion of Heegaard Floer homology for three-dimensional orbifolds with arbitrary cyclic singularities, generalizing the recent work of Biji Wong where the singular locus is assumed to be connected.</p>","PeriodicalId":54790,"journal":{"name":"Journal of Knot Theory and Its Ramifications","volume":"11 1","pages":""},"PeriodicalIF":0.5,"publicationDate":"2024-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140199908","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Presentations of diquandles and diquandle coloring invariants for solid torus knots and links 实心环结和链接的二阶和二阶着色不变式的呈现
IF 0.5 4区 数学
Journal of Knot Theory and Its Ramifications Pub Date : 2024-03-15 DOI: 10.1142/s021821652350102x
Jieon Kim, Sang Youl Lee, Mohd Ibrahim Sheikh
{"title":"Presentations of diquandles and diquandle coloring invariants for solid torus knots and links","authors":"Jieon Kim, Sang Youl Lee, Mohd Ibrahim Sheikh","doi":"10.1142/s021821652350102x","DOIUrl":"https://doi.org/10.1142/s021821652350102x","url":null,"abstract":"<p>A diquandle is a set equipped with two quandle operations interacting via a kind of distributive laws which come from Reidemeister moves on dichromatic links. This algebraic systems provide coloring invariants for dichromatic links. In this paper, we give explicit constructions of free diquandles and diquandle presentations, and then discuss Tietze transformations for the diquandle presentations. We also introduce the fundamental diquandles for dichromatic links. Particularly, we describe the fundamental diquandles and diquandle counting invariants for knots and links in the solid torus via annulus diagrams. We append the tables of diquandles and dikei’s of orders <span><math altimg=\"eq-00001.gif\" display=\"inline\" overflow=\"scroll\"><mo>≤</mo><mn>5</mn></math></span><span></span>.</p>","PeriodicalId":54790,"journal":{"name":"Journal of Knot Theory and Its Ramifications","volume":"110 1","pages":""},"PeriodicalIF":0.5,"publicationDate":"2024-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140167232","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bounds in simple hexagonal lattice and classification of 11-stick knots 简单六方格中的界限和 11 棍结的分类
IF 0.5 4区 数学
Journal of Knot Theory and Its Ramifications Pub Date : 2024-02-27 DOI: 10.1142/s0218216523500979
Yueheng Bao, Ari Benveniste, Marion Campisi, Nicholas Cazet, Ansel Goh, Jiantong Liu, Ethan Sherman
{"title":"Bounds in simple hexagonal lattice and classification of 11-stick knots","authors":"Yueheng Bao, Ari Benveniste, Marion Campisi, Nicholas Cazet, Ansel Goh, Jiantong Liu, Ethan Sherman","doi":"10.1142/s0218216523500979","DOIUrl":"https://doi.org/10.1142/s0218216523500979","url":null,"abstract":"<p>The <i>stick number</i> and the <i>edge length</i> of a knot type in the simple hexagonal lattice (sh-lattice) are the minimal numbers of sticks and edges required, respectively, to construct a knot of the given type in sh-lattice. By introducing a linear transformation between lattices, we prove that for any given knot both values in the sh-lattice are strictly less than the values in the cubic lattice. Finally, we show that the only non-trivial <span><math altimg=\"eq-00001.gif\" display=\"inline\" overflow=\"scroll\"><mn>1</mn><mn>1</mn></math></span><span></span>-stick knots in the sh-lattice are the trefoil knot (<span><math altimg=\"eq-00002.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mn>3</mn></mrow><mrow><mn>1</mn></mrow></msub></math></span><span></span>) and the figure-eight knot (<span><math altimg=\"eq-00003.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mn>4</mn></mrow><mrow><mn>1</mn></mrow></msub></math></span><span></span>).</p>","PeriodicalId":54790,"journal":{"name":"Journal of Knot Theory and Its Ramifications","volume":"38 1","pages":""},"PeriodicalIF":0.5,"publicationDate":"2024-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140147201","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Representations of flat virtual braids which do not preserve the forbidden relations 不保留禁止关系的平面虚拟辫的表示
IF 0.5 4区 数学
Journal of Knot Theory and Its Ramifications Pub Date : 2024-02-27 DOI: 10.1142/s0218216523500931
Valeriy Bardakov, Bogdan Chuzhinov, Ivan Emel’yanenkov, Maxim Ivanov, Elizaveta Markhinina, Timur Nasybullov, Sergey Panov, Nina Singh, Sergey Vasyutkin, Valeriy Yakhin, Andrei Vesnin
{"title":"Representations of flat virtual braids which do not preserve the forbidden relations","authors":"Valeriy Bardakov, Bogdan Chuzhinov, Ivan Emel’yanenkov, Maxim Ivanov, Elizaveta Markhinina, Timur Nasybullov, Sergey Panov, Nina Singh, Sergey Vasyutkin, Valeriy Yakhin, Andrei Vesnin","doi":"10.1142/s0218216523500931","DOIUrl":"https://doi.org/10.1142/s0218216523500931","url":null,"abstract":"&lt;p&gt;In the paper, we construct a representation &lt;span&gt;&lt;math altimg=\"eq-00001.gif\" display=\"inline\" overflow=\"scroll\"&gt;&lt;mi&gt;𝜃&lt;/mi&gt;&lt;mo&gt;:&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mstyle&gt;&lt;mtext mathvariant=\"normal\"&gt;FVB&lt;/mtext&gt;&lt;/mstyle&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;→&lt;/mo&gt;&lt;mstyle&gt;&lt;mtext mathvariant=\"normal\"&gt;Aut&lt;/mtext&gt;&lt;/mstyle&gt;&lt;mo stretchy=\"false\"&gt;(&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;F&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo stretchy=\"false\"&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt;&lt;span&gt;&lt;/span&gt; of the flat virtual braid group &lt;span&gt;&lt;math altimg=\"eq-00002.gif\" display=\"inline\" overflow=\"scroll\"&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mstyle&gt;&lt;mtext mathvariant=\"normal\"&gt;FVB&lt;/mtext&gt;&lt;/mstyle&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt;&lt;span&gt;&lt;/span&gt; on &lt;span&gt;&lt;math altimg=\"eq-00003.gif\" display=\"inline\" overflow=\"scroll\"&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;&lt;span&gt;&lt;/span&gt; strands by automorphisms of the free group &lt;span&gt;&lt;math altimg=\"eq-00004.gif\" display=\"inline\" overflow=\"scroll\"&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;F&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt;&lt;span&gt;&lt;/span&gt; with &lt;span&gt;&lt;math altimg=\"eq-00005.gif\" display=\"inline\" overflow=\"scroll\"&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;&lt;span&gt;&lt;/span&gt; generators which does not preserve the forbidden relations in the flat virtual braid group. This representation gives a positive answer to the problem formulated by Bardakov in the list of unsolved problems in virtual knot theory and combinatorial knot theory by Fenn &lt;i&gt;et al&lt;/i&gt;.&lt;/p&gt;&lt;p&gt;Also we find the set of normal generators of the groups &lt;span&gt;&lt;math altimg=\"eq-00006.gif\" display=\"inline\" overflow=\"scroll\"&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mstyle&gt;&lt;mtext mathvariant=\"normal\"&gt;VP&lt;/mtext&gt;&lt;/mstyle&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo stretchy=\"false\"&gt;∩&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;H&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt;&lt;span&gt;&lt;/span&gt; in &lt;span&gt;&lt;math altimg=\"eq-00007.gif\" display=\"inline\" overflow=\"scroll\"&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mstyle&gt;&lt;mtext mathvariant=\"normal\"&gt;VB&lt;/mtext&gt;&lt;/mstyle&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt;&lt;span&gt;&lt;/span&gt;, &lt;span&gt;&lt;math altimg=\"eq-00008.gif\" display=\"inline\" overflow=\"scroll\"&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mstyle&gt;&lt;mtext mathvariant=\"normal\"&gt;FVP&lt;/mtext&gt;&lt;/mstyle&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo stretchy=\"false\"&gt;∩&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mstyle&gt;&lt;mtext mathvariant=\"normal\"&gt;FH&lt;/mtext&gt;&lt;/mstyle&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt;&lt;span&gt;&lt;/span&gt; in &lt;span&gt;&lt;math altimg=\"eq-00009.gif\" display=\"inline\" overflow=\"scroll\"&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mstyle&gt;&lt;mtext mathvariant=\"normal\"&gt;FVB&lt;/mtext&gt;&lt;/mstyle&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt;&lt;span&gt;&lt;/span&gt;, &lt;span&gt;&lt;math altimg=\"eq-00010.gif\" display=\"inline\" overflow=\"scroll\"&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mstyle&gt;&lt;mtext mathvariant=\"normal\"&gt;GVP&lt;/mtext&gt;&lt;/mstyle&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo stretchy=\"false\"&gt;∩&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mstyle&gt;&lt;mtext mathvariant=\"normal\"&gt;GH&lt;/mtext&gt;&lt;/mstyle&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt;&lt;span&gt;&lt;/span&gt; in &lt;span&gt;&lt;math altimg=\"eq-00011.gif\" display=\"inline\" overflow=\"scroll\"&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mstyle&gt;&lt;mtext mathvariant=\"normal\"&gt;GVB&lt;/mtext&gt;&lt;/mstyle&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;n","PeriodicalId":54790,"journal":{"name":"Journal of Knot Theory and Its Ramifications","volume":"28 1","pages":""},"PeriodicalIF":0.5,"publicationDate":"2024-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140147204","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An invariant of virtual trivalent spatial graphs 虚拟三价空间图的不变量
IF 0.5 4区 数学
Journal of Knot Theory and Its Ramifications Pub Date : 2024-02-27 DOI: 10.1142/s0218216523500876
Evan Carr, Nancy Scherich, Sherilyn Tamagawa
{"title":"An invariant of virtual trivalent spatial graphs","authors":"Evan Carr, Nancy Scherich, Sherilyn Tamagawa","doi":"10.1142/s0218216523500876","DOIUrl":"https://doi.org/10.1142/s0218216523500876","url":null,"abstract":"<p>We create an invariant of virtual <span><math altimg=\"eq-00001.gif\" display=\"inline\" overflow=\"scroll\"><mi>Y</mi></math></span><span></span>-oriented trivalent spatial graphs using colorings by <i>virtual Niebrzydowski algebras</i>. This paper generalizes the color invariants using <i>virtual tribrackets</i> and <i>Niebrzydowski algebras</i> by Nelson–Pico, and Graves-Nelson-T. We computed all tribrackets, Niebrzydowski algebras and virtual Niebrzydowski algebras of orders 3 and 4, and provide generative code for all data sets.</p>","PeriodicalId":54790,"journal":{"name":"Journal of Knot Theory and Its Ramifications","volume":"81 1","pages":""},"PeriodicalIF":0.5,"publicationDate":"2024-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140147213","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Modified symmetrized integral in G-coalgebras G 考量中的修正对称积分
IF 0.5 4区 数学
Journal of Knot Theory and Its Ramifications Pub Date : 2024-01-24 DOI: 10.1142/s0218216523500827
Nathan Geer, Ngoc Phu Ha, Bertrand Patureau-Mirand
{"title":"Modified symmetrized integral in G-coalgebras","authors":"Nathan Geer, Ngoc Phu Ha, Bertrand Patureau-Mirand","doi":"10.1142/s0218216523500827","DOIUrl":"https://doi.org/10.1142/s0218216523500827","url":null,"abstract":"<p>For <span><math altimg=\"eq-00003.gif\" display=\"inline\" overflow=\"scroll\"><mi>G</mi></math></span><span></span> a commutative group, we give a purely Hopf <span><math altimg=\"eq-00004.gif\" display=\"inline\" overflow=\"scroll\"><mi>G</mi></math></span><span></span>-coalgebra construction of <span><math altimg=\"eq-00005.gif\" display=\"inline\" overflow=\"scroll\"><mi>G</mi></math></span><span></span>-colored <span><math altimg=\"eq-00006.gif\" display=\"inline\" overflow=\"scroll\"><mn>3</mn></math></span><span></span>-manifolds invariants using the notion of modified integral.</p>","PeriodicalId":54790,"journal":{"name":"Journal of Knot Theory and Its Ramifications","volume":"24 1","pages":""},"PeriodicalIF":0.5,"publicationDate":"2024-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140147142","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A new condition on the Jones polynomial of a fibered positive link 纤维正链琼斯多项式的新条件
IF 0.5 4区 数学
Journal of Knot Theory and Its Ramifications Pub Date : 2024-01-06 DOI: 10.1142/s0218216523500797
Lizzie Buchanan
{"title":"A new condition on the Jones polynomial of a fibered positive link","authors":"Lizzie Buchanan","doi":"10.1142/s0218216523500797","DOIUrl":"https://doi.org/10.1142/s0218216523500797","url":null,"abstract":"<p>We give a new upper bound on the maximum degree of the Jones polynomial of a fibered positive link. In particular, we prove that the maximum degree of the Jones polynomial of a fibered positive knot is at most four times the minimum degree. Using this result, we can complete the classification of all knots of crossing number <span><math altimg=\"eq-00001.gif\" display=\"inline\" overflow=\"scroll\"><mo>≤</mo><mn>1</mn><mn>2</mn></math></span><span></span> as positive or not positive, by showing that the seven remaining knots for which positivity was unknown are not positive. That classification was also done independently at around the same time by Stoimenow.</p>","PeriodicalId":54790,"journal":{"name":"Journal of Knot Theory and Its Ramifications","volume":"146 1","pages":""},"PeriodicalIF":0.5,"publicationDate":"2024-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140147121","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信