Journal of Knot Theory and Its Ramifications最新文献

筛选
英文 中文
On the 3-loop polynomial of genus 1 knots with trivial Alexander polynomial 关于具有微不足道的亚历山大多项式的属 1 节的三环多项式
IF 0.3 4区 数学
Journal of Knot Theory and Its Ramifications Pub Date : 2024-07-24 DOI: 10.1142/s0218216524500238
Kouki Yamaguchi
{"title":"On the 3-loop polynomial of genus 1 knots with trivial Alexander polynomial","authors":"Kouki Yamaguchi","doi":"10.1142/s0218216524500238","DOIUrl":"https://doi.org/10.1142/s0218216524500238","url":null,"abstract":"","PeriodicalId":54790,"journal":{"name":"Journal of Knot Theory and Its Ramifications","volume":null,"pages":null},"PeriodicalIF":0.3,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141807036","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Quandle coloring quivers of (p,q)-torus links (p,q)-torus链接的Quandle着色四分体
IF 0.5 4区 数学
Journal of Knot Theory and Its Ramifications Pub Date : 2024-06-07 DOI: 10.1142/s0218216524500147
Boxin Zhou, Ximin Liu
{"title":"Quandle coloring quivers of (p,q)-torus links","authors":"Boxin Zhou, Ximin Liu","doi":"10.1142/s0218216524500147","DOIUrl":"https://doi.org/10.1142/s0218216524500147","url":null,"abstract":"","PeriodicalId":54790,"journal":{"name":"Journal of Knot Theory and Its Ramifications","volume":null,"pages":null},"PeriodicalIF":0.5,"publicationDate":"2024-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141371293","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A note on Murasugi sum of trivially extendable relative trisections 关于可琐延相对三等分的村杉和的说明
IF 0.5 4区 数学
Journal of Knot Theory and Its Ramifications Pub Date : 2024-06-04 DOI: 10.1142/s0218216524500111
Abhijeet Ghanwat, Suhas Pandit, A. Selvakumar
{"title":"A note on Murasugi sum of trivially extendable relative trisections","authors":"Abhijeet Ghanwat, Suhas Pandit, A. Selvakumar","doi":"10.1142/s0218216524500111","DOIUrl":"https://doi.org/10.1142/s0218216524500111","url":null,"abstract":"","PeriodicalId":54790,"journal":{"name":"Journal of Knot Theory and Its Ramifications","volume":null,"pages":null},"PeriodicalIF":0.5,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141387793","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Some Polynomial Invariants of Virtual Doodles 虚拟涂鸦的一些多项式不变式
IF 0.5 4区 数学
Journal of Knot Theory and Its Ramifications Pub Date : 2024-05-10 DOI: 10.1142/s021821652450010x
Joonoh Kim, Kyoung-Tark Kim
{"title":"Some Polynomial Invariants of Virtual Doodles","authors":"Joonoh Kim, Kyoung-Tark Kim","doi":"10.1142/s021821652450010x","DOIUrl":"https://doi.org/10.1142/s021821652450010x","url":null,"abstract":"","PeriodicalId":54790,"journal":{"name":"Journal of Knot Theory and Its Ramifications","volume":null,"pages":null},"PeriodicalIF":0.5,"publicationDate":"2024-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140992535","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
New Invariants for Virtual Knots via Spanning Surfaces 通过跨曲面实现虚拟结的新不变式
IF 0.5 4区 数学
Journal of Knot Theory and Its Ramifications Pub Date : 2024-05-07 DOI: 10.1142/s0218216524500093
Andras Juhasz, Louis H. Kauffman, Eiji Ogasa
{"title":"New Invariants for Virtual Knots via Spanning Surfaces","authors":"Andras Juhasz, Louis H. Kauffman, Eiji Ogasa","doi":"10.1142/s0218216524500093","DOIUrl":"https://doi.org/10.1142/s0218216524500093","url":null,"abstract":"","PeriodicalId":54790,"journal":{"name":"Journal of Knot Theory and Its Ramifications","volume":null,"pages":null},"PeriodicalIF":0.5,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141005591","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cyclic coverings of the 3-sphere branched over wild knots of dynamically defined type 在动态定义类型的野结上分支的 3 球的循环覆盖层
IF 0.5 4区 数学
Journal of Knot Theory and Its Ramifications Pub Date : 2024-05-03 DOI: 10.1142/s0218216524500081
Juan Pablo Díaz, Gabriela Hinojosa
{"title":"Cyclic coverings of the 3-sphere branched over wild knots of dynamically defined type","authors":"Juan Pablo Díaz, Gabriela Hinojosa","doi":"10.1142/s0218216524500081","DOIUrl":"https://doi.org/10.1142/s0218216524500081","url":null,"abstract":"","PeriodicalId":54790,"journal":{"name":"Journal of Knot Theory and Its Ramifications","volume":null,"pages":null},"PeriodicalIF":0.5,"publicationDate":"2024-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141014930","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Computation of the knot symmetric quandle and its application to the plat index of surface-links 绳结对称阶数的计算及其在表面链路 plat 指数中的应用
IF 0.5 4区 数学
Journal of Knot Theory and Its Ramifications Pub Date : 2024-04-30 DOI: 10.1142/s0218216524500056
Jumpei Yasuda
{"title":"Computation of the knot symmetric quandle and its application to the plat index of surface-links","authors":"Jumpei Yasuda","doi":"10.1142/s0218216524500056","DOIUrl":"https://doi.org/10.1142/s0218216524500056","url":null,"abstract":"<p>A surface-link is a closed surface embedded in the 4-space, possibly disconnected or non-orientable. Every surface-link can be presented by the plat closure of a braided surface, which we call a plat form presentation. The knot symmetric quandle of a surface-link <span><math altimg=\"eq-00001.gif\" display=\"inline\" overflow=\"scroll\"><mi>F</mi></math></span><span></span> is a pair of a quandle and a good involution determined from <span><math altimg=\"eq-00002.gif\" display=\"inline\" overflow=\"scroll\"><mi>F</mi></math></span><span></span>. In this paper, we compute the knot symmetric quandle for surface-links using a plat form presentation. As an application, we show that for any integers <span><math altimg=\"eq-00003.gif\" display=\"inline\" overflow=\"scroll\"><mi>g</mi><mo>≥</mo><mn>0</mn></math></span><span></span> and <span><math altimg=\"eq-00004.gif\" display=\"inline\" overflow=\"scroll\"><mi>m</mi><mo>≥</mo><mn>2</mn></math></span><span></span>, there exist infinitely many distinct surface-knots of genus <span><math altimg=\"eq-00005.gif\" display=\"inline\" overflow=\"scroll\"><mi>g</mi></math></span><span></span> whose plat indices are <span><math altimg=\"eq-00006.gif\" display=\"inline\" overflow=\"scroll\"><mi>m</mi></math></span><span></span>.</p>","PeriodicalId":54790,"journal":{"name":"Journal of Knot Theory and Its Ramifications","volume":null,"pages":null},"PeriodicalIF":0.5,"publicationDate":"2024-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140828851","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Coefficients of Catalan states of lattice crossing II: Applications of ΘA-state expansions 晶格交叉的加泰罗尼亚态系数 II: ΘA 态展开的应用
IF 0.5 4区 数学
Journal of Knot Theory and Its Ramifications Pub Date : 2024-04-18 DOI: 10.1142/s0218216524500032
Mieczyslaw K. Dabkowski, Cheyu Wu
{"title":"Coefficients of Catalan states of lattice crossing II: Applications of ΘA-state expansions","authors":"Mieczyslaw K. Dabkowski, Cheyu Wu","doi":"10.1142/s0218216524500032","DOIUrl":"https://doi.org/10.1142/s0218216524500032","url":null,"abstract":"<p>Plucking polynomial of a plane rooted tree with a delay function <span><math altimg=\"eq-00002.gif\" display=\"inline\" overflow=\"scroll\"><mi>α</mi></math></span><span></span> was introduced in 2014 by Przytycki. As shown in this paper, plucking polynomial factors when <span><math altimg=\"eq-00003.gif\" display=\"inline\" overflow=\"scroll\"><mi>α</mi></math></span><span></span> satisfies additional conditions. We use this result and <span><math altimg=\"eq-00004.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi mathvariant=\"normal\">Θ</mi></mrow><mrow><mi>A</mi></mrow></msub></math></span><span></span>-state expansion introduced in our previous work to derive new properties of coefficients <span><math altimg=\"eq-00005.gif\" display=\"inline\" overflow=\"scroll\"><mi>C</mi><mo stretchy=\"false\">(</mo><mi>A</mi><mo stretchy=\"false\">)</mo></math></span><span></span> of Catalan states <span><math altimg=\"eq-00006.gif\" display=\"inline\" overflow=\"scroll\"><mi>C</mi></math></span><span></span> resulting from an <span><math altimg=\"eq-00007.gif\" display=\"inline\" overflow=\"scroll\"><mo stretchy=\"false\">(</mo><mi>m</mi><mo stretchy=\"false\">×</mo><mi>n</mi><mo stretchy=\"false\">)</mo></math></span><span></span>-lattice crossing <span><math altimg=\"eq-00008.gif\" display=\"inline\" overflow=\"scroll\"><mi>L</mi><mo stretchy=\"false\">(</mo><mi>m</mi><mo>,</mo><mi>n</mi><mo stretchy=\"false\">)</mo></math></span><span></span>. In particular, we show that <span><math altimg=\"eq-00009.gif\" display=\"inline\" overflow=\"scroll\"><mi>C</mi><mo stretchy=\"false\">(</mo><mi>A</mi><mo stretchy=\"false\">)</mo></math></span><span></span> factors when <span><math altimg=\"eq-00010.gif\" display=\"inline\" overflow=\"scroll\"><mi>C</mi></math></span><span></span> has arcs with some special properties. In many instances, this yields a more efficient way for computing <span><math altimg=\"eq-00011.gif\" display=\"inline\" overflow=\"scroll\"><mi>C</mi><mo stretchy=\"false\">(</mo><mi>A</mi><mo stretchy=\"false\">)</mo></math></span><span></span>. As an application, we give closed-form formulas for coefficients of Catalan states of <span><math altimg=\"eq-00012.gif\" display=\"inline\" overflow=\"scroll\"><mi>L</mi><mo stretchy=\"false\">(</mo><mi>m</mi><mo>,</mo><mn>3</mn><mo stretchy=\"false\">)</mo></math></span><span></span>.</p>","PeriodicalId":54790,"journal":{"name":"Journal of Knot Theory and Its Ramifications","volume":null,"pages":null},"PeriodicalIF":0.5,"publicationDate":"2024-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140623948","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Knot quandle decomposition along a torus 沿环状线的结quandle分解
IF 0.5 4区 数学
Journal of Knot Theory and Its Ramifications Pub Date : 2024-03-22 DOI: 10.1142/s0218216523500980
Marco Bonatto, Alessia Cattabriga, Eva Horvat
{"title":"Knot quandle decomposition along a torus","authors":"Marco Bonatto, Alessia Cattabriga, Eva Horvat","doi":"10.1142/s0218216523500980","DOIUrl":"https://doi.org/10.1142/s0218216523500980","url":null,"abstract":"<p>We study the structure of the augmented fundamental quandle of a knot whose complement contains an incompressible torus. We obtain the relationship between the fundamental quandle of a satellite knot and the fundamental quandles/groups of its companion and pattern knots. General presentations of the fundamental quandles of a link in a solid torus, a link in a lens space and a satellite knot are described. In the last part of this paper, an algebraic approach to the study of affine quandles is presented and some known results about the Alexander module and quandle colorings are obtained.</p>","PeriodicalId":54790,"journal":{"name":"Journal of Knot Theory and Its Ramifications","volume":null,"pages":null},"PeriodicalIF":0.5,"publicationDate":"2024-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140199905","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Heegaard Floer invariants for cyclic 3-orbifolds 环状 3-orbifolds 的 Heegaard Floer 不变量
IF 0.5 4区 数学
Journal of Knot Theory and Its Ramifications Pub Date : 2024-03-22 DOI: 10.1142/s0218216523501031
Saibal Ganguli, Mainak Poddar
{"title":"Heegaard Floer invariants for cyclic 3-orbifolds","authors":"Saibal Ganguli, Mainak Poddar","doi":"10.1142/s0218216523501031","DOIUrl":"https://doi.org/10.1142/s0218216523501031","url":null,"abstract":"<p>We define a notion of Heegaard Floer homology for three-dimensional orbifolds with arbitrary cyclic singularities, generalizing the recent work of Biji Wong where the singular locus is assumed to be connected.</p>","PeriodicalId":54790,"journal":{"name":"Journal of Knot Theory and Its Ramifications","volume":null,"pages":null},"PeriodicalIF":0.5,"publicationDate":"2024-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140199908","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信