绳结对称阶数的计算及其在表面链路 plat 指数中的应用

IF 0.3 4区 数学 Q4 MATHEMATICS
Jumpei Yasuda
{"title":"绳结对称阶数的计算及其在表面链路 plat 指数中的应用","authors":"Jumpei Yasuda","doi":"10.1142/s0218216524500056","DOIUrl":null,"url":null,"abstract":"<p>A surface-link is a closed surface embedded in the 4-space, possibly disconnected or non-orientable. Every surface-link can be presented by the plat closure of a braided surface, which we call a plat form presentation. The knot symmetric quandle of a surface-link <span><math altimg=\"eq-00001.gif\" display=\"inline\" overflow=\"scroll\"><mi>F</mi></math></span><span></span> is a pair of a quandle and a good involution determined from <span><math altimg=\"eq-00002.gif\" display=\"inline\" overflow=\"scroll\"><mi>F</mi></math></span><span></span>. In this paper, we compute the knot symmetric quandle for surface-links using a plat form presentation. As an application, we show that for any integers <span><math altimg=\"eq-00003.gif\" display=\"inline\" overflow=\"scroll\"><mi>g</mi><mo>≥</mo><mn>0</mn></math></span><span></span> and <span><math altimg=\"eq-00004.gif\" display=\"inline\" overflow=\"scroll\"><mi>m</mi><mo>≥</mo><mn>2</mn></math></span><span></span>, there exist infinitely many distinct surface-knots of genus <span><math altimg=\"eq-00005.gif\" display=\"inline\" overflow=\"scroll\"><mi>g</mi></math></span><span></span> whose plat indices are <span><math altimg=\"eq-00006.gif\" display=\"inline\" overflow=\"scroll\"><mi>m</mi></math></span><span></span>.</p>","PeriodicalId":54790,"journal":{"name":"Journal of Knot Theory and Its Ramifications","volume":"9 1","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2024-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Computation of the knot symmetric quandle and its application to the plat index of surface-links\",\"authors\":\"Jumpei Yasuda\",\"doi\":\"10.1142/s0218216524500056\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A surface-link is a closed surface embedded in the 4-space, possibly disconnected or non-orientable. Every surface-link can be presented by the plat closure of a braided surface, which we call a plat form presentation. The knot symmetric quandle of a surface-link <span><math altimg=\\\"eq-00001.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>F</mi></math></span><span></span> is a pair of a quandle and a good involution determined from <span><math altimg=\\\"eq-00002.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>F</mi></math></span><span></span>. In this paper, we compute the knot symmetric quandle for surface-links using a plat form presentation. As an application, we show that for any integers <span><math altimg=\\\"eq-00003.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>g</mi><mo>≥</mo><mn>0</mn></math></span><span></span> and <span><math altimg=\\\"eq-00004.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>m</mi><mo>≥</mo><mn>2</mn></math></span><span></span>, there exist infinitely many distinct surface-knots of genus <span><math altimg=\\\"eq-00005.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>g</mi></math></span><span></span> whose plat indices are <span><math altimg=\\\"eq-00006.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>m</mi></math></span><span></span>.</p>\",\"PeriodicalId\":54790,\"journal\":{\"name\":\"Journal of Knot Theory and Its Ramifications\",\"volume\":\"9 1\",\"pages\":\"\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2024-04-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Knot Theory and Its Ramifications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1142/s0218216524500056\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Knot Theory and Its Ramifications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s0218216524500056","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

曲面链接是嵌入 4 空间的封闭曲面,可能是断开的,也可能是不可定向的。每一个曲面链接都可以由一个编织曲面的plat closure呈现,我们称之为plat form 呈现。曲面链接 F 的结对称 quandle 是由 F 确定的一对 quandle 和一个好的反卷。作为应用,我们证明了对于任意整数 g≥0 和 m≥2,存在无穷多个不同的 g 属曲面结,其 plat 指数为 m。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Computation of the knot symmetric quandle and its application to the plat index of surface-links

A surface-link is a closed surface embedded in the 4-space, possibly disconnected or non-orientable. Every surface-link can be presented by the plat closure of a braided surface, which we call a plat form presentation. The knot symmetric quandle of a surface-link F is a pair of a quandle and a good involution determined from F. In this paper, we compute the knot symmetric quandle for surface-links using a plat form presentation. As an application, we show that for any integers g0 and m2, there exist infinitely many distinct surface-knots of genus g whose plat indices are m.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.80
自引率
40.00%
发文量
127
审稿时长
4-8 weeks
期刊介绍: This Journal is intended as a forum for new developments in knot theory, particularly developments that create connections between knot theory and other aspects of mathematics and natural science. Our stance is interdisciplinary due to the nature of the subject. Knot theory as a core mathematical discipline is subject to many forms of generalization (virtual knots and links, higher-dimensional knots, knots and links in other manifolds, non-spherical knots, recursive systems analogous to knotting). Knots live in a wider mathematical framework (classification of three and higher dimensional manifolds, statistical mechanics and quantum theory, quantum groups, combinatorics of Gauss codes, combinatorics, algorithms and computational complexity, category theory and categorification of topological and algebraic structures, algebraic topology, topological quantum field theories). Papers that will be published include: -new research in the theory of knots and links, and their applications; -new research in related fields; -tutorial and review papers. With this Journal, we hope to serve well researchers in knot theory and related areas of topology, researchers using knot theory in their work, and scientists interested in becoming informed about current work in the theory of knots and its ramifications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信