A new condition on the Jones polynomial of a fibered positive link

Pub Date : 2024-01-06 DOI:10.1142/s0218216523500797
Lizzie Buchanan
{"title":"A new condition on the Jones polynomial of a fibered positive link","authors":"Lizzie Buchanan","doi":"10.1142/s0218216523500797","DOIUrl":null,"url":null,"abstract":"<p>We give a new upper bound on the maximum degree of the Jones polynomial of a fibered positive link. In particular, we prove that the maximum degree of the Jones polynomial of a fibered positive knot is at most four times the minimum degree. Using this result, we can complete the classification of all knots of crossing number <span><math altimg=\"eq-00001.gif\" display=\"inline\" overflow=\"scroll\"><mo>≤</mo><mn>1</mn><mn>2</mn></math></span><span></span> as positive or not positive, by showing that the seven remaining knots for which positivity was unknown are not positive. That classification was also done independently at around the same time by Stoimenow.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s0218216523500797","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We give a new upper bound on the maximum degree of the Jones polynomial of a fibered positive link. In particular, we prove that the maximum degree of the Jones polynomial of a fibered positive knot is at most four times the minimum degree. Using this result, we can complete the classification of all knots of crossing number 12 as positive or not positive, by showing that the seven remaining knots for which positivity was unknown are not positive. That classification was also done independently at around the same time by Stoimenow.

分享
查看原文
纤维正链琼斯多项式的新条件
我们给出了纤维正链节的琼斯多项式最大度的新上限。特别是,我们证明了纤正结的琼斯多项式的最大度最多是最小度的四倍。利用这一结果,我们可以完成将交叉数≤12 的所有结划分为正结或非正结的工作,证明剩余的七个未知正结不是正结。大约在同一时间,斯托伊梅诺也独立完成了这一分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信